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Abstract. The concept of semihyperbolicity introduced by Carleson, Jones and
Yoccoz for polynomials is carried over to transcendental entire functions. For certain
classes of semihyperbolic entire functions it is shown that there are no wandering
domains and that the Julia sets are locally connected.

1. Introduction

In complex dynamics the singularities of the inverse function play an important role.
For example, they are closely related to periodic components of the Fatou set, cf., e.g.,
[19, §2.4]. For rational functions the set of singularities of the inverse consists precisely
of the set of critical values; for entire functions we also have to consider the asymptotic
values. We call the critical and asymptotic values singular values.

Already Fatou [13, §34] considered rational functions for which the w-limit set of the
critical values does not intersect the Julia set. Today such functions are called hyperbolic.
A weakened form of hyperbolicity called subhyperbolicity was introduced by Douady and
Hubbard [9, Exposé III]. Furthermore, building on work by Mané [16], Carleson, Jones,
and Yoccoz [8] introduced (for polynomials) the concept of semihyperbolicity. One aspect
of the papers mentioned is to relate these concepts of hyperbolicity to the geometry of
the Julia set. In particular, it is shown there that the above conditions imply that the
Julia set is locally connected if it is connected.

In this paper, we consider semihyperbolic entire functions. We note that Kriete
and Sumi [14] treated the more general case of semihyperbolic entire semigroups, but
our results are in a somewhat different direction. We show that semihyperbolic entire
functions do not have wandering domains in which the iterates have a finite limit
function. This is used to show that certain entire functions do not have any wandering
domains. We also show that the Julia sets of certain semihyperbolic transcendental
entire functions are locally connected. We illustrate our results by a number of examples.
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The readers are expected to be familiar with the basic notations and results of
complex dynamics, which can be found in, e.g., [4, 7, 17, 21] for the dynamics of rational
functions and [5, 11, 19] for those of transcendental entire functions.

2. Results

Let f be an entire function. We denote the n-th iterate of f by f”, and the Fatou set
and the Julia set of f by F(f) and J(f), respectively. For a € C and r > 0, we use
the notation D(a,7) = {z € C | |z — a|] < r}. We say that f is semihyperbolic at a
if there exist » > 0 and N € N such that for all n € N and for all components U of
f(D(a,r)) = {2z € C| f*(2) € D(a,r)} the function f"|y : U — D(a,r) is a proper
map of degree at most N. We say that f is semihyperbolic if f is semihyperbolic at
all @ € J(f). Recall that the w-limit set of a point a consists of all b € C for which
there exists an increasing sequence (ng) such that f"*(a) — b. A non-periodic point
which is contained in its own w-limit set is called recurrent. Mané [16] showed that if
f is rational and a € J(f) is not a parabolic periodic point and not in the w-limit set
of a recurrent critical point, then f is semihyperbolic at a. Conversely, it is easy to see
that a rational or entire function is not semihyperbolic at a parabolic periodic point or
a recurrent critical point. Furthermore, an entire function is never semihyperbolic at an
asymptotic value. We note, however, that there exists a transcendental entire function
which has no asymptotic value, no parabolic periodic point and no recurrent critical
point, but which is not semihyperbolic; see Example 1 below.

In [8], semihyperbolic polynomials are characterized by various conditions. The
condition given in the following theorem is one of them. It was also obtained by Kriete
and Sumi [14] in the case of semihyperbolic transcendental semigroups. For U C C we
denote by diam(U) the spherical diameter of U.

Theorem 1 Let f be entire and suppose that f is semihyperbolic at a € J(f). Then
there exists s > 0 with the following property: for all ¢ > 0 there exists M € N such
that if n > M and U is a component of f~"(D(a,s)), then diam(U) < €.

For completeness we include a proof of Theorem 1 in §3 below.

Corollary 1 Let f be entire. Assume that F(f) has a Siegel disk U. Then f is not
semihyperbolic at any point of OU.

Another consequence of Theorem 1 is the following result.

Theorem 2 Let f be entire. If f is semihyperbolic at a € C, then a is not a limit
function of {f"}nen in any component of F(f).

Corollary 2 A semihyperbolic entire function does not have a wandering domain where
the iterates have a finite limit function.
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We remark that a semihyperbolic entire function may have wandering domains. For

example, the function z — z + e~ *

— 1+ 23 is semihyperbolic and it has a wandering
domain where the iterates tend to co; see [1].

We denote the set of all singular values of f by sing(f™!) and define P(f) =
U~ f(sing(f~1)). It was shown in [6] that finite limit functions in wandering domains

are contained in the derived set of P(f). Using Theorem 2 and Corollary 2 we can prove

the non-existence of wandering domains for some functions where the argument of [6]
does not seem to apply; see Examples 2—4 below.

To exclude wandering domains in these examples, the main tool used besides
Theorem 2 and Corollary 2 is a theorem of Eremenko and Lyubich [12, Theorem 1]
which says that if sing(f~!) is bounded, then there does not exist a component of F(f)
where the iterates of f tend to oco. We denote the class of all transcendental entire
functions f for which sing(f~!) is bounded by B.

Corollary 3 If f € B is semihyperbolic, and F(f) # 0, then F(f) consists only of
attracting basins.

Now we turn our attention to the local connectivity of Julia sets. Local connectivity
of Julia sets of certain transcendental entire functions was considered in [2, 3, 18].

Theorem 3 Let f be entire and U be a bounded invariant component of F(f). Assume
that, for every a € QU, there existr > 0 and N € N such that for n € N every component
V of f=™(D(a,r)) with V N OU # O satisfies deg(f™|v : V — D(a,r)) < N. Then the
boundary of U is a Jordan curve. In particular, if f is semihyperbolic on OU, then OU
1s a Jordan curve.

For the Julia set, we have the following.

Theorem 4 Let f be entire. Assume that F(f) consists of finitely many attracting
basins. Suppose that if U is an immediate attracting basin, then U is bounded, f is
semihyperbolic on OU, and there exists N € N such that for every n € N and for every
component V- # U of f~"(U)\ UiZs f*(U) we have deg(f"|y : V — U) < N. Then
J(f) is locally connected.

We note here that if an entire function f has an unbounded invariant component U,
then OU and J(f) are not locally connected, except possibly if f|y is univalent; cf. [2, 3].

3. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. Let r and N be as in the definition of semihyperbolicity. We shall
show that each s € (0,r) has the required property. To do this, we assume that there
exists s € (0,r) for which this is false. We may assume that ¢ = 0 and » = 1. Thus
0 < s < 1, and there exist € > 0, a sequence (ny) tending to co and components Uy
of f~™(D(0,s)) such that diam(Uy) > ¢ for all k. This implies that there exist R > 0
with D(0, R) N Uy # 0 for all k, say ux, € D(0,R) N Ug. Let Vi be the component
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of f~™ (D) that contains Uz. Then Vj is simply-connected, and thus there exists a
biholomorphic map ¢, : D — Vi with ¢,(0) = uy. Then By := f™ o ¢ is a Blaschke
product of degree at most N, with |Bg(0)| = |f™ (ux)| < s. Next we note that there
exists b € C\D with f™(b) ¢ D for all n € N. (For example, this follows from the fact
that {z € C | f*(z) — oo} is not empty; see [10].) It follows that b ¢ Vj for all k.
Hence |¢}.(0)| < 4|b — ug| < 4(]b| + R) by Koebe’s one quarter theorem. This implies
that the ¢, form a normal family. Passing to subsequences if necessary, we may assume
that ¢, — ¢ for some holomorphic function ¢ : D — C and that By — B for some
Blaschke product B satisfying |B(0)| < s. There exists p € (0,1) with |B(z)| > s for
|z| = p. This implies that if & is sufficiently large, then |By(z)| > s for |2| = p and thus
¢ '(Ux) C D(0, p). Using Koebe’s distortion theorem we find that
/
Ui < 6x(D(0. ) < D (un, 2102).
(1= p)?

On the other hand, since diam(Uy) > ¢, we have Uy ¢ D (u,ie). Thus |¢}(0)| >
e(1 — p)?/4p and hence |¢'(0)| > (1 — p)?/4p. In particular, ¢ is not constant and
is thus univalent. We deduce that f™ = By o qﬁ,;l — B o ¢! locally uniformly
on ¢(D). We shall now show that ¢(ID) contains a point of J(f), which clearly
contradicts the locally uniform convergence of f™ on ¢(D). We choose z; € U, with
f™(zx) = 0. Then z; € J(f) because 0 = a € J(f) by hypothesis. For large k£ we have
wy == @, (21) € D(0, p). Passing to a subsequence if necessary we may assume that
wr — wo € D. Then z; = ¢r(wr) = d(wo) € J(f) N (D). m

Theorem 2 follows easily from Theorem 1. However, it is also easily proved directly

using the methods above. In fact, suppose that U is a component of F'(f) with f™ |y — a
as k — oo. Let r be as in the definition of semihyperbolicity. We may again assume
that r = 1 and @ = 0. We fix ¢ € U and may assume that f™(c) € D for all k. We
denote the component of f~"¢(D) that contains ¢ by V4 and consider conformal maps
o : D — Vi with ¢r(0) = ¢. Then By := f™ o ¢ is a Blaschke product of degree
at most N, with B (0) = f™(c) — 0. As before we may assume that ¢p — ¢ with a
univalent function ¢ and By — B with a Blaschke product B satisfying B(0) = 0. Thus
f™ — Bo ¢!, contradicting the assumption that f™ — a =0 on U.

4. Proofs of Theorem 3 and Theorem 4

Proof of Theorem 3. Since OU is compact, we can choose the same r» > 0 and N € N
in the hypothesis for all a« € OU. First we show that there exist # with 0 < # < 1 and
a constant ¢ > 0 such that for every z € OU and n € N the Euclidean diameter of each
component of f~"(D(z, 37)) intersecting OU is less than ¢#™. Our argument is similar to
that of Yin [22]. We denote the module of the Grétzsch ring domain D\ {z | 0 < z < r}
by u(r). Grétzsch’s theorem says that if A is an annulus separating 0 and z € D from the
unit circle, then the module mod(A) of A satisfies mod(A4) < u(|z|). It follows that if A
separates two points z1, zo € D from the unit circle, then mod(A) < u(|z1—22|/|1—Z122|).
This implies that if « € C, R > 0 and C C D(a,1R) is compact and connected,
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then mod(D(a, R)\C) < u((4diamg(C)/5)R), where diampg(-) denotes the Euclidean
diameter. We note that there exists L € (0,1) with pu(r) < log(4/r) for all r < L;
see [15, §I1.2]. The argument used in the proof of Theorem 1 shows that there exists
no € N such that if n > ng, then diamg(V) < 3rL < jr for each component V of

f™™(D(z,1r)) intersecting OU. For simplicity we shall assume that ny = 1. We fix

n € N and z € 9U, and consider a component V,, of f~(D(z9,1r)) intersecting oU.
We define r, := diamg(V,). We take z, € V, N OU satistying f™(z,) = zy and set
Znok = fF(zn) for k = 1,2,---,n — 1. Let Vi be a component of f~*(D(zp_,37))
containing z,. Then

r
ff(Vis1) € D (Zn—ImZ)
fork=0,1,---,n—1 and
r
%-:D<Zna§) ODViD:---DV,.

Since
log 2
2T

(1 (0 )\ 7))

< (0 (s 5) 179

= mod (f* (Vi \ Vis1))

= deg ( Flyavg Ve \ Vers = f* (Vi \ Virr) ) - mod (Vi \ Vi)
< N -mod (Vi \ Vis1)

we have

log 2

2rN’

for k =1,2,---,n— 1. Since V; C D(z, ir) the last inequality is also true for £ = 0.
Hence we have

mod(Vj \ V/c+1)

-1

4 2 -
logi>u<5 T >>m0dV0\V Z d(Vi \ V1) >
n =0

nlog2
2N~

We deduce that ¢ = 5r/2 and # = 2-'/>"V have the required properties. The arguments
used to show that an entire function cannot be semihyperbolic at a parabolic point or at
a boundary point of a Siegel disk extend to the more general situation considered here
where only branches of f~" fixing QU are considered. Thus U is not a parabolic basin
or a Siegel disk. Hence U is an attracting component and f|y is conjugate to a finite
Blaschke product on the unit disk . Let ¢ be the degree of that Blaschke product. In the
rest of the argument we follow [4, §9.9], [7] and [21, §5.5]. As in [7, Theorems V.4.1 and
V1.5.1] there exists p € (0,1), a compact, connected set E C U and a homeomorphism
p:{2€C|p<lz| <1} = U\ E such that f(p(2)) = p(29) for p/? < |z| < 1. We
may choose ¢y € (p, 1) such that dist(¢(z),0U) < ir for ¢, < |z| < 1. Here dist(-,)
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denotes Euclidean distance. Then there exists M € N and ¢y, ...ty 1 € (fo, t5'?) with
o<ty <...<ty—1 <tp:= t(l)/q such that for all s € [0,27] and for all j € {1,..., M}
there exists z € OU with {¢ (te) | t;-1 <t <t;} C D(z, 7). We consider the sets

['(s,j,n):= {(p(teis)|(] )l/q <t<(t )l/q }

Thus for all s and j there exists z € OU with T'(s, j,n) C D(z, £r). Since f™ (¢ (te**)) =
ga(tq"eiqns) we have f"(I'(s,j,n)) C I'(¢"s,5,0) C Dz, %7“) for some z € AU so
that diamg(T'(s,j,n)) < c@", for all s,j and n. We define v, : [0,27] — U \ E,
Ya(s) = o(te/7" €i). Then

C:

{¥n(8), Yny1(8)} C T(s,1,n) UT (s, M, n) (s,j,n
7j=1
so that
M
70 (8) = Ynt1(s)| < diamg (U I'(s, 7, n)) < Mco".
j=1

This implies that (7y,) converges uniformly to a continuous function + : [0, 27] — JU.
Since f is entire we can deduce from the maximum principle that 7 is actually a Jordan
curve. |

Proof of Theorem 4. To see that J(f) is locally connected, due to a Theorem of
Whyburn, it suffices to show that (i) the boundary of each Fatou component is locally
connected and (ii) for an arbitrary ¢ > 0, the number of Fatou components whose
diameter with respect to the spherical distance exceeds ¢ is finite. It follows from
the hypotheses that each Fatou component is bounded. Furthermore, its boundary is a
Jordan curve by Theorem 3. This implies the condition (i). Let {D(z, 57), 2z € OU }iL,
be an open covering of the boundary of an attracting component U, where r is as in
the definition of semihyperbolicity. Since, by hypothesis, for every n € N and every
component V of f(U) \ UrZs f *(U) we have deg(f"|y : V — U) < N, we deduce
that 0V is covered by at most NM components of the preimages of the disks D(z, —r)
under f". Theorem 1 shows that diam(V') tends to 0 as n tends to infinity. This
implies (ii). n

5. Examples

The first example shows, as already mentioned in §2, that Mafné’s characterization of
semihyperbolicity for rational functions does not carry over to entire functions.

Example 1 Let
1
f(z) = % - %simrz—i- c(cosmz — 1),

where ¢ = 0.467763 - - - is a solution of the equation w+ 2 cos 2cm — 4em sin 2er = 0. Then
f has no asymptotic values, no parabolic periodic point and no recurrent critical point,
but f is not semihyperbolic at 1 € J(f).
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Figure 1. The Julia set of the function from Example 1. The basin of attraction of 0
is black, that of 3 is grey, and the Julia set is white. The range shown is —4 < Rz < 10,
|Sz] < 3. One can see that there are eight (resp. four) components of the basin of 0
with the point 8 (resp. 4) on their boundary.

Verification. Suppose that f has an asymptotic value, say f(z) — a as z — oo on
a path + connecting 0 with co. Then f(z)/z — 0 as z — co on 7. Also, f(2)/z — 3
as z — oo along the positive or negative real axis. We may assume that v does not
intersect itself and intersects R only in 0. Thus we obtain four domains bounded by ~,
7 and R. In these domains f(z)/z is unbounded. Hence f(z)/z has at least four direct
singularities over oo. Since f(z)/z has order 1, this contradicts the Denjoy-Carleman-
Ahlfors theorem [20, §XI.4]. Thus f has no asymptotic values. Since

1 1 1 V144722

f’(Z):§—§COS7TZ—C7TSin7TZ:§— 5

where 6 = 0.327959 - - - satisfies sinf = 1/v/1 + 472¢? and cos @ = 2¢cm/v/1 + 47w2c?, the
critical points of f are z = 2n and z = 2n+ 1 — (20/7) = 2n + 1 — 0.208785 - - - for
n € Z. Hence 0 is a superattracting fixed point. It is easy to see that f(2k) = k for
k € Z. Hence we have f"(2") = 1 and the finite orbit {2", f(2") = 27!, f2(2") =
2n=2 ... fr=1(2") = 2} consists of n critical points. It follows that if r > 0 and U is the
component of f~"(D(1,r)) that contains 2", then deg(f"|y : U — D(1,r)) > 2". Hence
f is not semihyperbolic at 1. The equation satisfied by ¢ implies that « = f(1) = %—20 =
—0.435526 - - - is a fixed point of f. By calculation, we see that f'(«) = 1.838896- - - so
that « is repelling. We deduce that o € J(f) and since @ = f(1) this implies that
1e J(f)-

Furthermore, we see that § = f(—1) = a — 1 is a fixed point of f, with
f'(B) =1— f'(a) = —0.838896 - - -. Hence [ is an attracting fixed point. The zeros of
f'— 1 are given by z = 2n+ 1 and z = 2n — (26/7), with n € Z. By Rolle’s theorem,
any interval bounded by two (real) fixed points of f contains at least one zero of f' — 1.

sin(mz + 6),
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Since there is exactly one zero of f' — 1 in each of the intervals (3, «) and («, 0), these
intervals contain no fixed points of f, and we have f(z) > x for x € («,0) and f(z) < z
for z € (B,a). Moreover, the interval (o, 0) contains no critical point of f so that
f((«,0)) C (a,0). Together with f(z) > x for x € («,0) this implies that (o, 0] is
contained in the attracting basin of 0. Next we note that if x < 3, then f(z) > z. This
follows from the fact that the local minima of f(z)—x are taken at the points 2n+1 and
that f(2n+ 1) =n+a > 2n+1 for n < —2. A similar argument shows that f(z) < z
for z > 0. We now show that (—oo, «) is contained in the attracting basin of 8. To do
so we note that £ = —1.208785 - - - is the only critical point of f contained in the interval
(—2,0). We have f(§) = —1.539919--- and f?(§) = —1.337119---. Since there is no
critical point in the interval (f(£),£), we obtain f([£(€),€]) = [(€), F2(6)] C [£(©), €]
If we denote by I,, the closed interval bounded by f"~'(£) and f™(£), the last equation
takes the form f(I;) = I, C I, and induction shows that f(1,) = I,,41 C I, for all
n € N. It is not difficult to see that there exists 7 < 1 such that |f'(z)| < nforz € I5. It
follows that f"(xz) — S as n — oo, uniformly for x € I3, and hence for z € I;. We also
have f([¢,—1]) = [f(&), f(=1)] = [f(£), 5] C I, and thus f™(z) — § as n — oo also for
z € [§,—1]. For z < B we have z < f(z) < f(—2) = —1. This implies that f"(z) —
as n — oo for x < . Using f(z) < z for f < £ < a we then obtain f"(z) — [ as
n — oo for all x € (—o0, ). Finally, using f(x) < x for x > 0 we see that for every real
number its orbit converges to 0 or [, or it is eventually mapped onto «. In particular,
this is the case for every critical point. Thus f has no parabolic periodic point and no
recurrent critical point. [

In the following examples we use Corollaries 2 and 3 to rule out wandering domains.
In Example 2 we can then use Theorem 4 to prove that J(f) is locally connected, while

J(f) = C in Example 3.
Example 2 Let
f(z) = cos /2.

There exists A such that if ™ < a < A, then f has the following properties: f
is semihyperbolic and has an attracting fized point such that F(f) consists of its

az

w2 — 4z

basin. Also, J(f) contains infinitely many critical values. Furthermore, J(f) is locally
connected.

Verification. Similarly as in Example 1 we see that there exists no asymptotic
value. Next we note that all critical points of f are real. For example, this follows from
the fact that polynomials with only real zeros have only real critical points, and f is
a locally uniform limit of such polynomials. This argument also shows that between
two zeros of f there is exactly one critical point. The critical points are thus given by
¢f <ef <cf <---withef € (0,(37m)%), ¢f € ((2n — 3)*x2, (2n — 1)?7?) for n > 2 and
¢, € ((2n — 3)?n%, (2n + 1)>x?) for n € N. Clearly we have f(c}) > 0 and f(c,) < 0.

Now the maximum of f in the interval ((2n — 2)27%, (2n — 5)?7?) is attained at ¢; for
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Figure 2. The Julia set of the function from Example 2 for a = 372. In this case
o = 72 is an attracting fixed point. The basin of attraction of a is black and the Julia
set is white. The range shown is —25 < 2z < 150, |Sz| < 60.

n > 2, and it tends to a/4 as n — oco. Hence lim,,_,, f(c¢f) = a/4. Similarly, we have
lim, , f(c,) = —a/4. Hence f belongs to B.

We see that f is a unimodal map on the interval [0,972/4]. Furthermore we have
f(0) = f(972/4) = 0 and f'(0) = a/7? > 1 for a > 7> so that 0 is a repelling fixed
point. The zeros of f” are located in the intervals bounded by the zeros of f’. A
numerical computation shows that the smallest zero of f” is at z = 18.76159---. We
find that f is concave in the interval [0,18.76159---]. Since f attains its maximum in
this interval at ¢ = 8.07147 - - - we conclude that f has exactly one fixed point o = a/(a)
in (0,972/4). Moreover, a(a) — 0 as a — 7% and «a(a) — 97%/4 as a — oo, and « is an
increasing function of a. We also see that f’(a) € [0,1) for a € (0,¢]] and that f'(«)
is a decreasing function of a as long as « € [c],18.76159 - - -]. A numerical computation
shows that a = 43.90495--- and o = 12.5642 - -- are a solution of the simultaneous
equations f(a) = a and f'(a) = —1. We set A = 43.90495- - - and conclude that if
2 < a < A, then 1 > f'(a) > —1 so that « is an attracting fixed point.

Since 72 coshy — (72 + 4y?) > 0 for y > 0 and a > 72, we have f(z) < z for z < 0.
Hence f™(x) — —oc as n — oo for x < 0 and thus (—o0, 0) is contained in J(f) because
f € B. Thus ¢, € J(f) for all n € N. We denote by U the immediate attractive basin
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of . Then U contains at least one critical point. Since U is simply connected and
symmetric with respect to the real axis and since ¢, € J(f) for all n € N, we conclude
that ¢7 ¢ U for n > 2. Thus ¢ € U.

We shall show now that in fact (0,¢f] C U. Let I be the closed interval with
endpoints o and ¢f. Using the simple connectivity and symmetry of U as before we
see that I C U. If a < ¢ so that I = [a,c]] we have z < f(z) < afor 0 < 7 < «
and this implies that (0,«) € U. Suppose now that ¢; < « so that I = [¢], a]. Then
fI) = [a, f(cf)] c U. For 0 < z < a we have z < f(z) < f(c]), and this implies
that (0,a) € U. Altogether we find that (0,¢f] C (0,a) UI C U and hence that
(0, f(c)] € U in any case.

Next we show that f(cf) > f(c) for n > 2. To do so, we note that if n > 2, then
¢f > (2n—2)’7® > (57)? and thus

N act a a _ 25a

flen) = dcf =2 A—m?fch T A—72/(3m)2 96

On the other hand, a numerical computation yields ¢f = 8.071473--- and f(c¢f) =

0.343930---a > 25a/96. Hence the f(c}) are contained in U. Using the simple

connectivity and symmetry as above we see that the Fatou components containing the

¢ are mutually disjoint. We conclude that deg(f"|y : V — U) < 2 for n € N and every
component V # U of f~(U)\ U= f*(U).

A similar consideration shows that if z € RNJ(f), then there exists r > 0 such that
deg(f"|v : V. — D(z,r)) < 2 for n € N and every component V of f~"(D(z,r)). And of
course, if z € C\R and r < |Sz|, then f is univalent on every component f~"(D(z,))
for n € N. From the above, we see that f is semihyperbolic. It follows from Corollary 3
that F'(f) is equal to the attracting basin of a.

There exists a component L of f~'((—oo, f(c;)]) which intersects R only in c; .
Clearly U does not intersect L. Actually L is a curve which has an asymptotic curve
of the form = = by? + ¢, where z = x + 1y and b < 0. This follows since the function

z — cos/z is a composed function of z — /z and z — cos z and has no critical point
in the negative real axis. Furthermore, az/(7? — 4z) tends to the negative constant
—a/4 as |z| — 0o. We denote the domain bounded by L which contains U by D. For
sufficiently large R, we see |f(z)| ~ exp|3y/z| for z € D and |z| > R and hence we
have |f(z)| > |z| for z € D, |z| > R. This implies that U C D N D(0, R) so that U is
bounded. From Theorem 4, we see that J(f) is locally connected. u

Example 3 Let
f(z) = cos vz — b,

with b chosen so large that f(x) < x for all x € R. Then f is semihyperbolic and
J(f) = C. Moreover, f has infinitely many critical values.

z

w2 — 4z

Verification. We note that f'—1 has only one real zero ¢ = —18.5261 - - -. It suffices
to choose b such that f(c) < ¢. This shows that b > 10.36071 - - - satisfies the hypothesis.
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As before we see that there are no asymptotic values and that all critical points
are in the positive real axis. Hence f belongs to B. By the assumption f(z) < z for
all x € R, the orbit of each critical point tends to infinity. Thus F(f) has no periodic
component. We see that f is semihyperbolic by the argument before. Hence f has no
wandering domain where limit functions are finite by Corollary 2. Since f € B, we
conclude J(f) =C. u

Our last example shows that semihyperbolicity at the boundaries of Fatou
components may suffice to prove the local connectivity of a Julia set.

Example 4 Let
fz) =a—(a+m)

with a = 3.0008 - - - which satisfies f(a) = f3(a). Then f is semihyperbolic at every
point of J(f) except a, f(a), f?(a), f3(a) and f4(a), and f has no wandering domain.
Moreover J(f) is locally connected.

sin 2

Figure 3. The Julia set of the function from Example 4. The basin of attraction of «
is black and the Julia set is white. The range shown is —5 < Rz < 25, |Sz| < 8. One
can see that ¢ = 4.493409--- € U, that ¢§ = 10.90412--- and ¢i = 17.22075- - - are
in preimages of U and that ¢ = 23.51945--- € J(f).

Verification. It is clear that a is an asymptotic value and, by the assumption, a is
preperiodic and f(a) is a periodic point with period 4. A numerical computation shows
that the periodic cycle {f(a), f*(a), f3(a), f*(a)} is repelling. As in Example 2 we see
that all critical points are in the real axis and thus P(f) is contained in the real axis. We
denote the critical points by 0, +-¢;” and +¢; fori € N, with0 <7 < ¢f <¢f <cf <---,
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and they satisfy lim; o ¢ = lim; o tc; = o0, f(+e]) > a, 0 < f(xc)) < a,
lim; o f(£c!) = a and lim; o, f(£c; ) = a.

Numerical computation shows that f has an attracting fixed point o = 4.31283 - - - €
[r,27] and a repelling fixed point 8 = 3.30750---. Similarly as in Example 2 we see
that the interval (5, o] is contained in the immediate basin U of «. Moreover, we have
cf €eU.

Next we note that 0 is the only critical point of f contained in the interval [—m, 7]
and that f(0) = —x and f(4+7) = a. Thus f restricted to [—=, 7] is a unimodal map
satisfying f([—m,n]) C [—m, 7]. A periodic component of F'(f) intersecting [—m, 7| is an
attracting or parabolic basin and thus contains a critical point of f. On the other hand,
it is also simply connected. Arguing as in Example 2 we see that there is no periodic
component of F(f) intersecting [—m,7].

For x € [r,B) we have f(x) < z and thus f"(x) € [—=,x] for sufficiently
large n. A numerical computation yields ¢ = 10.90412--- ¢f = 17.22075---,
f(cF) =3.56175--- and f(cq) = 3.35688 - - -. This implies that {f(c3), f(c3)} C (8, )
so that lim, . f™(+c]) = a for i € {2,3}. Note that the Fatou component containing
¢y and the Fatou component containing cj are different because ¢y < 47 < c3 and
f(4r) =a € J(f). Since ¢; > 137/2 for i > 4, we have

. _J_ 2
fch) =a— (a+m) 22l Sa+%=3.3016---<6

i

by numerical computation. Hence f"(cj) € [—m,n] C J(f) for sufficiently large n if
i > 4. Also, it is not difficult to see that f(+c; ) € [—m, x| for all i € N. By an argument
similar to that in the verification of Example 2 we now find that f is semihyperbolic at
every point of J(f) except a, f(a), f*(a), f3(a) and f*(a).

By Theorem 2, if f has a wandering domain, then the only possible finite limit
functions there are a, f(a), f?(a), f3(a) and f*(a). Since f(a), f?(a), f3(a) and
f%(a) form a repelling periodic cycle, there exists no wandering domain with finite
limit functions. Hence f has no wandering domain and no Baker domain because f
belongs to B. Thus every Fatou component is eventually mapped on the attracting
component U containing a. It is clear that deg(f" |v: V — U) < 2 for n € N and every
component V # U of f~(U) \ Up=, f*(U).

The imaginary axis is mapped into the negative real axis. There exist a curve L
containing ¢; which is mapped into (—oo, 7). It has an asymptotic line z = 27. We
denote the domain bounded by the imaginary axis and L by D. Since U is a simply
connected invariant component, we have U C D. For sufficiently large M, we have
f(z) e in DN{z | Sz > M} and f(z) = e* in DN {z | 32 < —M}. Thus
|f(2)| > |z| for z € D, |z| > M, if M is sufficiently large. Hence U is bounded. Because
U is symmetric with respect to real axis, f(a), f%(a), f3(a) and f*(a) are not on U
and neither is a. From Theorem 3, OU is a Jordan curve.

A point which is not on the boundary of any Fatou component is called a buried
point. Since every Fatou component is eventually mapped to U and since a, f(a), f?(a),
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f3(a) and f*(a) are not on AU, we conclude that a, f(a), f?(a), f3(a) and f*(a) are
buried points. By Theorem 4 we see that J(f) is locally connected. ]
Finally we briefly mention the example
9 sin y/z
N
considered in [6]. It was shown there that f € B and that P(f) N J(f) has no finite
limit points if 7% < a < 2%, Then the main result of [6] was used to show that f has

no wandering domains for @ in this range. The methods of this paper allow to show
that f has no wandering domains for 72 < a < A = 91.1046 - - -, where A is chosen such
that the smallest positive fixed point w of f satisfies f'(w) = —1 if « = A. Moreover,
J(f) N P(f) and in fact J(f) Nsing(f~!) have finite limit points for 272 < a < A, so
that the method of [6] does not seem to be applicable. The arguments used to show
this are similar to the ones used before. We omit the details.
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