On proper analytic maps with one critical point

Walter Bergweiler

ABSTRACT. Let U C C be a domain containing {z € C: Rez > o, |arg 2| < n}
for some o,n > 0 and let f : U — U be a proper holomorphic map satisfying
f(z) =z+1+4+a/z+0(1/|z]) as 2 = oo, |arg z| < 7, with a € C. We show
that if U contains only one critical point of f, and this critical point is simple,
then Rea > i. This slightly generalizes a previous result concerning critical
points in Leau domains. We also show that the condition Rea > % is sharp.

1. Introduction and results

Let f be a rational function with a fixed point zg € C. Then the function
h(z) :=1/(z — f(2)) has a pole at zg. The residue of h at zq is called the residue
fized point index and denoted by ¢(f, 29); see Milnor’s book [5, §12] for a discussion
of this concept. Clearly, if f'(z9) # 1, then «(f,20) = 1/(1 — f'(20)). If f'(20) =1,
then zp is a multiple pole of h, say of multiplicity m + 1 with m € N. We also
say that zo is a multiple fixed point of f of multiplicity m + 1. The residue fixed
point index and, of course, the multiplicity of a fixed point are invariant under
holomorphic changes of variables [5, Lemma 12.3]. This is used to define them for
zZg = 0.

It is known classically (see, e. g., [5, §10] or [7, §3.5]) that if f has a multiple
fixed point of multiplicity m + 1 in zp, then there exist m invariant components
Ui,Us,...,U, of the Fatou set of f such that 2y € OUy and f"|y, — 20 as n — oo
for each k € {1,2,...,m}. These domains Uy, are called the Leau domains of f at
Zo. Moreover, it is known that each Leau domain of f contains at least one critical
point of f.

The following result was obtained (independently) in [1] and [2].

THEOREM A. Let f be a rational function with a multiple fized point zo of
multiplicity m + 1. Suppose that each Leau domain of f at 2y contains only one
critical point of f, and that this critical point is simple. Then

m 1
1.1 < — 4 -
(1) Reu(f,20) < T + 5
The special case m = 1 of Theorem A had been stated (without proof) already

earlier in [6].
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We remark that the methods of [1] and [2] also work if the critical points in
the Leau domains are multiple. If we denote the multiplicity of the critical point
in Uy by M, then the conclusion of Theorem A holds with (1.1) replaced by

<7 1 3 1
(12) Re L(f, Zo) S %m + 5 - E l; M
Note that (1.2) reduces to (1.1) if My, =1 for all k.

For simplicity we shall restrict ourselves in the following to the case of simple
critical points, even though the results obtained below (Theorems 1.1 and 1.2) also
extend to the case of multiple critical points.

Even though some of the underlying ideas in [1] and [2] are similar, there are
also various differences in the proofs. One advantage of the method of [2] is that
it leads to improved (though probably not sharp) bounds for polynomials. On the
other hand, the method of [1] has the advantage that it uses only the asymptotics
of f in the Leau domain and does not require that f is analytic in a neighborhood
of zp. For example, the method may be applicable to Baker domains of entire or
meromorphic functions.

To explain this in more detail, we specialize Theorem A for simplicity to the
case m = 1 and assume that zy = oo; that is, we consider rational functions f with
a double fixed point at co. After a normalization we may assume that

f(z):z+1+%+z—§+...

in a neighborhood of co. (This form can be achieved by conjugation with a linear

map.) Then a; =1 — ¢(f, 00). Theorem A says that if the Leau domain of f at oo

contains only one critical point, and this critical point is simple, then Rea; > i.
The method of [1] actually gives the following result.

THEOREM 1.1. Let U C C, U # C, be a simply-connected domain containing
{z € C:Rez > o,|argz| < n} for some o,m > 0 and let f : U — U be a proper
holomorphic map satisfying

a 1
1.3 zZ)=z4+14+—-4o0| —
(1.9 fe=s+1+2+0( )
for some a € C as z — oo, |arg z| < n. Suppose that U contains exactly one critical
point of f, and that this critical point is simple. Then Rea > %.

We note that the usual arguments ([5, §10], [7, §3.5]) for the existence of critical
points in Leau domains imply that f as in Theorem 1.1 has at least one critical
point in U. The hypotheses thus means that f has only one critical point.

We also remark that it is not necessary to make the hypothesis that U be
simply-connected. This follows also from the other hypotheses made; cf. [1, Lem-
ma 4] and [7, Exercises 3.4.6 and 3.5.10].

For completeness, we include a proof of Theorem 1.1 in §3. The basic idea of
this proof is the same as in [1], but the argument is arranged somewhat differently.

The following result shows that Theorem 1.1 is sharp.

THEOREM 1.2. Let a € C with Rea > %. Then there ezists o > 0, a simply-
connected domain U # C containing {z € C : Rez > o} and a proper holomorphic
map f : U — U satisfying (1.3) and having exactly one critical point, which is

simple.
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The methods of [2] show that if, under the hypotheses of Theorem A, we have
equality in (1.1), then m = 1 and «(f,20) = 3 or m =2 and «(f, z0) = 1. Thus the
function f in Theorem 1.2 cannot be rational if Rea = % and Ima # 0. I do not
know whether the function f in Theorem 1.2 can always be chosen to be rational
Rea > 1.

2. Preliminary Lemmas

LEMMA 2.1. Let U C C be a domain containing {z € C: Rez > o,|arg z| < n}
for some o,n > 0 and let f : U — U be a holomorphic map satisfying (1.3) as
z = 00. Then f™(z) =n + alogn + o(logn) as n — oo for fized z € U.

This result is known; see, e. g., Fatou’s memoir [3, §9] for a proof of this
result under the slightly stronger assumption that o(1/|z|) in (1.3) is replaced by
O(1/]z]7) with v > 1. (Fatou actually shows that then f"(z) —n — alogn tends to
a limit as n — oo, and this limit is a solution of Abel’s functional equation.) For
completeness, we include a proof of the above result.

PROOF OF LEMMA 2.1. It follows easily from (1.3) that f*(2) ~ k as k — oo,
say f*(z) = k + (k) with 7(k) = o(k) as k — oco. Substituting this in (1.3) yields

Tk +1) = 7(k) + %T(k) +o (%) = (k) + (a+ 0(1))%.
It follows that
7(n) =7(1) + Z (r(k+1) = 7(k)) = (a+ o(1)) Z % = alogn + o(logn)
k=1 k=1
as n — 00. O

LEMMA 2.2. Let S := C\(—o00,0] and let U C C be a simply-connected domain
with 0 ¢ U. If¢ : S — U is biholomorphic, then |¢(z)|/x is decreasing for
z € (0,00).

ProOF. Fix z € (0,00) and define a biholomorphic map A from the unit disk

2
onto S by h(z) := = (H‘z) . Then F := 1 o h is a biholomorphic map from

1—2
the unit disk onto U. By Koebe’s one quarter theorem, U contains the disk of
radius 1|F”(0)| around F(0). Since 0 ¢ U this implies $|F'(0)| < |F(0)|. Because
F'(0) = ¢'(h(0))h'(0) = 4z’ (x) and F(0) = 9(z) we obtain

W) 1
0@ | Sz
It follows that p |¢( )| () )
X X
gl =me (G5 -2 <o

An immediate consequence is the following result.

LEMMA 2.3. If ¢ is as in the previous lemma and if |(z)|/xz — 1 as x — oo,
then |(x)| > =.

The following result is easy to prove. It can already be found in Fatou’s mem-
oir [4, p. 310].
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LEMMA 2.4. The function g(z) := z + 1+ . has a fived point of multiplicity 2
at oo and S := C\(—o0,0] is the Leau domain of g at oo. The only critical point
of g contained in S is the simple critical point %

3. Proof of Theorem 1.1

Without loss of generality we may assume that 0 ¢ U. There exists a biholo-
morphic map ¢ : S — U such that ¢(3) is the critical point of f and ¢(z) — oo as
z — 00, z € R. It can be deduced from Lemma 2.4 (see [1, Lemma 6] for the details
of this argument) that 1 o g = f o 4. This implies that 1 (¢"(2)) = f™(¥(2)) for
z € S and n € N. Combining this with Lemmas 2.1 and 2.2 we see that ¢(z)/z — 1
as x — 00, £ € R. Tt follows from Lemma 2.3 that

9" (1) <[p(g" (W) = [F" W (W)I.

Lemma 2.1 implies that
1
n+ 1 logn < |n + alogn| + o(logn).

It follows that Rea > 1. O

4. Proof of Theorem 1.2

Let R>0and Sg:={2€ S:|2| >R} ={2€C: |2/ >Rand z ¢ (—o0,—R)}.
The map ¢ : Sg — S defined by ¢(z) := z + R?/2 — 2R is biholomorphic with
¢ '(2) = R+ 12+ 3V4Rz + z2. With g as in Lemma 2.4 we define h:= ¢ 'ogog.
A computation shows that

1 2R’ + R 1
=z+14+—+ == —
h(z)=z+ +4Z+ > 0(|z|3)
as z — 00. By Lemma 2.4, h is a proper selfmap of Sg.

We define b := a — %. Then Re b > 0 by hypothesis. We claim that there exists

¢ € R such that

1
Y(z):=z+blogz+e¢c sz
is univalent in Sg for large R. (Here log denotes the principal branch of the loga-
rithm.) To see this we note first that ¢'(z) — 1 as z — oo and thus it follows easily
that 1) is univalent in any convex subdomain of Sg for sufficiently large R.

We define curves vy : (R,00) = C by

. 1 +i
Y+(r) := lim t(re?) = —r + b(logr £ in) — 8T =4
0—+m r

and put 8 := Imb. We shall show that Im v, (r) > Blog|Rev4(r)| and Imvy_(r) <
Blog|Rev_(r)| for r > R, if ¢ and R suitably chosen. This means that vy is
“above” the curve given by Im z = Blog|Re z| and v_ is “below” this curve. The
univalence of ¢ then follows from this.
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If Reb = 0 so that b = if3, then we choose ¢ € R with ¢ < —32. Without loss
of generality we may assume that 8 > 0. We then have

Blog|Revs(r)| = Blog| 7~ fr— e’
< Blog(r + Bn)
= 5(10gr+log <1+ﬁr_7r>>
< ﬂ(logr+ﬁr—ﬂ)
em
< ﬂlogr—T
= Imy(r)

for r > 1. Choosing 8',8" € R with 8 < 8’ < 8" and ¢ < —3" we also have

logr
Blog |Rey_ ()] &%)

Blog|—r+p8r —c
Blog(r — B'm)

J5} (logr+10g (1 — B;—W)>
> B (logr - T)

> ﬂlogr%—c%r

r

v

= Imy_(r)

for large r.

If Reb > 0, then we can choose ¢ = 0 and obtain, for large R, the desired
estimates by a similar (and in fact simpler) computation. It follows that 1 is
univalent if ¢ is chosen as above and R is sufficiently large.

We now define U := 9)(Sg) and f := ¢ohot)~L. Then f is a proper holomorphic
selfmap of U. A lenghty computation shows that

)

as z — oo and this, again with a lenghty computation, implies that f has the
required asymptotics. ([l

1 1
=1(2) = 2 — blog 2 + (b —c)% +0 ( 8%
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