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Let f and h be transcendental meromorphic and g a transcendental entire
function. It is shown that if h grows slower than g in a suitable sense, then
there exists an unbounded sequence (2 ) such that f(g(zn)) = h(zn).

1. INTRODUCTION AND RESULTS
This paper is concerned with the following

CONJECTURE. Let f be a transcendental meromorphic, g a transcen-
dental entire, and h a nonconstant meromorphic function. Suppose that

T(r,h) = o(T(r,9)) (1)

as r — co. Then f(g) — h has infinitely many zeros.

Here and in the following, unless stated otherwise, “meromorphic” is
understood to mean “meromorphic in the complex plane C”, and T'(r,-)
denotes the Nevanlinna characteristic of a meromorphic function; see [11,
12, 17] for an introduction to Nevanlinna theory.

The above conjecture appears e. g. in [4, p. 43] or [28]. We recall some
background of this conjecture. Gross [10] had conjectured that the com-
position of two transcendental entire functions has infinitely many fixed
points. This was proved in [3] where it was actually shown that if f and
g are transcendental entire functions and if A is a nonconstant polynomial,
then f(g) — h has infinitely many zeros. These results were later extended
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to the case that f is meromorphic and h is rational; see [5, 6, 7] and Exam-
ple 3.4 of this paper. The case that h is a transcendental function satisfying
(1) is studied in [13, 14, 33]. In particular, it follows from the results ob-
tained there that the above conjecture is true if f has finite order and g has
finite lower order. Actually these papers contain stronger results by giving
lower bounds for the counting function of the zeros of f(g) — h. In the
special case that f is entire and h is a polynomial, but without restrictions
on the order or lower order, such estimates can be found in [29, 30]. There
are a number of further papers devoted to these and similar topics; here
we only refer to the references of the papers cited.

The condition (1) says that h grows slower than g, when the growth is
measured by the Nevanlinna characteristic. For us it will be convenient to
measure the growth of a meromorphic function f in terms of its spherical
derivative

|f'(2)]

&) = P

and

u(r, £) i= max f#(2).
|z|=r

It is apparent already from the Ahlfors-Shimizu form of the characteristic
that there are relations between T'(r, f) and u(r, f), and in fact such rela-
tions have been studied in detail by various authors; see e. g. [1, 2, 9, 15,
18, 20, 21, 22, 23, 24, 25, 26].

Here we only note that Clunie and Hayman [9] proved that if f is entire
transcendental, then

. ru(r, f)
i Sup foe 2, ) @

for some absolute constant A > 0. In particular,

lim sup ru(r, f) = 0. (3)

r—>00

This had been proved before by Lehto [15] who had also shown that

N =
—~~
N
S—

lim sup ry(r, f) >

r—00
for transcendental meromorphic f.

THEOREM 1.1. Let f be a transcendental meromorphic, g a transcen-
dental entire, and h o meromorphic function. Suppose that f takes every
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value ¢ € C := CU {00} at least twice. Suppose also that

lim sup riu(r,9) =00 (5)

rooo 1+ MaXj—r|<s/u(r,g) tH(E h)

for all K > 0. Then there exists an unbounded sequence ((,) such that

To discuss condition (5), let ¢(r) be positive and nondecreasing for r >
ro > 0. A classical result of Borel ([8, pp. 375-377], see also [16]) implies
that if K > 0 and C > 1, then the set F' of all » > rq satisfying

o (r+ 205 > Cplo (6)

has finite logarithmic measure; that is,

/dr
— < 0.
FT

Applying this to

. - #
p(r) : rpggctu(t,h) lr?'egglzlh (2)

yields the following result.

PROPOSITION 1.1. Let g and h be as in Theorem 1.1. If there exists a
set F' C [1,00) of infinite logarithmic measure such that

rp(rg)
— = 00,
r—oo,r€F MaxX¢<p tu(t, h)

then (5) holds.

For “nice” functions like ¢(r) = r® or ¢(r) = expr®, a > 0, the set of
r-values where (6) holds is bounded. Sometimes it is convenient to compare
u(r,h) and p(r, g) with such functions.

PROPOSITION 1.2. Let g and h be as in Theorem 1.1 and and let o(r)
be positive and nondecreasing for r > ro > 0. Suppose that for all K > 0
there exists C > 0 such that the set where (6) holds is bounded. If

h
lim sup rur, <oo and limsup ru(r,9) =00 (7)

r—oo  P(T) r—oo (1)
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or if

lim sup ru(r, h) =0 and limsup rulr, 9)
rooo  P(T) rooo  (r)

then (5) holds.

> 0, (8)

Theorem 1.1 will be deduced from the following theorem, which yields
the desired conclusion under a more abstract condition.

THEOREM 1.2. Let f be a transcendental meromorphic, g a transcen-
dental entire, and h a meromorphic function. Suppose that f takes every
value ¢ € C at least twice. Suppose also that there exists a sequence (T),)
of linear transformations such that (goT),) is not normal at 0 and (hoT,)
is normal ot 0. Then there exists an unbounded sequence () such that

In §3 we shall discuss some examples. The emphasis is not on obtaining
very general results, but rather on illustrating the method. The examples
will show that our results apply even in some cases where condition (1)
is not satisfied. Conversely, we do not know whether the hypotheses of
Theorem 1.2 are always satisfied if (1) holds.

2. PROOF OF THE THEOREMS

The following lemma is a local adaption of a lemma due to Zalcman [31].
A proof can be found in [19, Lemma 1.5].

LEMMA 2.1. Let F be a family of functions meromorphic in a neigh-
bourhood U of 0. If F is not normal at 0, then there exist a sequence (fi)
in F, a sequence (My) of linear transformations, and a non-constant mero-
morphic function f such that My — 0 and fi o My — f locally uniformly
in C.

A discussion of this lemma and a survey of its various applications is

given in [32].

Proof of Theorem 1.2. The conclusion follows from Picard’s Theorem
(applied to g) if h is constant. We may thus assume that h is non-constant.
According to Lemma 2.1 there exists a subsequence (Ty,) of (T3,), a
sequence (Mjy,) of linear transformations and a non-constant entire function
G such that
M —0 and goT, oM,—>G

locally uniformly on C. We define Ly, := Ty, o M}, and conclude that

fogoLy— foG



COMPOSITE MEROMORPHIC FUNCTIONS b)

locally uniformly on C. Passing over to a subsequence if necessary we may
assume that (hoT,,,) converges uniformly on a neighbourhood of 0 to some
function H which is meromorphic there. Since M} — 0 locally uniformly
on C we conclude that ho Ly — ¢ := H(0) locally uniformly on C. We may
assume that ¢ € C because otherwise we can consider 1/f and 1/h instead
of f and h. Thus

(feg—h)oLy —» foG—c

locally uniformly on C. Since G is non-constant and f takes the value c¢ at
least twice, we conclude from Picard’s theorem that f o G — ¢ has at least
one zero. Thus Hurwitz’s theorem implies that there exists kg € N and a
bounded sequence (x) of complex numbers such that

((fog—h)oLy)(wx) =0

for k > ko. With (x = Lg(xr) we thus have f(g9(Cx)) = h((k)-

To prove that (;, — oo we note that h o Ly — ¢ locally uniformly in C
and h is non-constant. We conclude that (L) is normal such that each
limit function is constant. Since g o Ly — G locally uniformly on C and
G is non-constant we see that Ly — oo locally uniformly in C. Hence
Gk = Li(zr) — o0.

Proof of Theorem 1.1. It follows from (5) and the continuity of u(r,-)
that there exists a sequence (r,,) tending to oo such that

rap(rn, 9) =n (1 + tu(t, h)) .

max
[t—rn|<n/p(rn,g)

Choose z, such that |z,| = r, and g% (z,) = u(rn,g) and define

n
n = and T,(2) := z, + pnz.
= (2) p

Then
(go Tn)#(o) = g#(zn)pn =mn — 00,

which by Marty’s theorem implies that (g o T},) is not normal at 0. On the
other hand, if |2| < 1, then

Tn — Pn S |Zn+PnZ| Srn+pn
which implies that

|Zn + pnz|h® (zn + ppz) < max  tu(t,h) = i 9) 1="" 1

T t=ral<pn n Pn
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and hence

(hOTn)#(Z) = pnh#(zn+pnz)

< P (T_n _ 1)
|2 + pnz| \ pn

Pn Tn — Pn
T'n —Pn  Pn
= 1.

IA

Marty’s Theorem implies that (h o T,) is normal at 0. The conclusion
follows from Theorem 1.2.

3. EXAMPLES

ExamPLE 3.1. If h(z) = exp p(z) or h(z) = cos p(z) for a polynomial p of
degree d > 1, then we have pu(r, h) < ar?! for some a > 0 and sufficiently
large r, and T'(r, h) ~ br? for some b > 0 as r — oo. From (2) we can deduce
that if g is an entire function satisfying (1), then lim sup,._, . u(r, g)/r¢~ ! =
oo. Tt follows that (7) is satisfied for ¢(r) = r4~!'. Thus Proposition 1.2
implies that (5) is always satisfied if (1) is satisfied. A similar argument
can be made for more general functions h.

ExampLE 3.2. If h(z) = H(p(z)) for an elliptic function H and a
polynomial p of degree d > 1, then we again have u(r,h) < ar?=! for
some a > 0 and sufficiently large r, but T(r,h) ~ br2¢ for some b > 0
as r — 00. The arguments used before show that (5) not only holds for
all entire functions g satisfying (1), but even for all entire g satisfying

VT(r,h) = o(T(r,9))-

ExaMPLE 3.3. If g(2) = e*sinz, then T(r,g9) ~ br as r — oo with
b= (1++2)/7 (see, e. g, [27]), and g¥#(7k) = exp 7k for k € N. Let h be
an entire function satisying (1). Then

h(©)
X d¢
/m:zr -2 ‘

% |z]=r
2M (2r, h)
r
< 2exp 3T (4r, h)
e 7" .

p(r,h) < M(r,h') =

<

Thus ru(r,h) < expr for large r. We deduce that (7) holds for ¢(r) =
expr. From Proposition 1.2 we conclude that (5) holds for all entire h
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satisfying (1). We also see that (5) holds for many functions A which do
not satisfy (1).

ExaMPLE 3.4. If h is rational, then tu(t, h) — 0 as t — oo, and from (3)

we deduce that (5) always holds in this case. The proof shows that in this
case the conclusion of Theorem 1.1 holds if f just takes the value ¢ = h(o0)
at least twice. This result was proved in [6] with a different method.
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