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1 Introduction and main result

E. Mues [10] proved in 1978 that if a ∈ C\{1} and if f is a transcendental entire function
which is not of the form f(z) = exp(αz + β) where α, β ∈ C, then f(z)f ′′(z) − af ′(z)2

has at least one zero. The case a = 0 is due to W. K. Hayman [5, Theorem 5]. As shown
by examples like f(z) = cos z the conclusion need not hold if a = 1, see [10] for further
examples.

If we allow f to be meromorphic, then we have further exceptional values for a. In fact,
an easy computation shows that if a = (n + 1)/n for some n ∈ N and if f(z) = F (z)−n for
an entire function F with the the property that F ′′ has no zeros, then f(z)f ′′(z)−af ′(z)2 =
−nF (z)−2n−1F ′′(z) has no zeros. It seems reasonable to conjecture if f is a transcendental
meromorphic function not of the form f(z) = exp(αz + β) and if a 6= 1 and a 6= (n + 1)/n,
then f(z)f ′′(z) − af ′(z)2 has at least one zero. This has recently been proved by J. K.
Langley [8] in the case that a = 0 and had been obtained earlier by Mues [9] in this case for
functions of finite lower order.

Theorem Let f be a meromorphic function of finite order and a ∈ C. If a 6= 1 and
a 6= (n+ 1)/n for all n ∈ N and if f(z)f ′′(z)− af ′(z)2 has only finitely many zeros, then f
has the form f(z) = R(z)eP (z) for a rational function R and a polynomial P .

Corollary Let f be a transcendental meromorphic function of finite order and let a be as
above. If f(z)f ′′(z) − af ′(z)2 has no zero, then f is of the form f(z) = exp(αz + β) where
α, β ∈ C.

Mues [10] also characterized the polynomials with the property that f(z)f ′′(z)− af ′(z)2 has
no zero for some a 6= 1. The proof of the corollary will show that one can also determine all
rational functions satisfying the hypothesis of the corollary.

2 Lemmas

The following result was proved in [3, Corollary 3].

Lemma 1 Let g be a meromorphic function of finite order. If g has only finitely many
critical values, then g has only finitely many asymptotic values.
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The next result can be proved using a logarithmic change of variable. This device was used
by A. E. Eremenko and M. Yu. Lyubich [4, §2] in iteration theory, see also [2, p. 173].
According to Eremenko and Lyubich, O. Teichmüller had used this change of variable before
in value distribution theory.

Lemma 2 Let g be a meromorphic function and suppose that g(0) 6=∞ and that the set of
finite critical and asymptotic values of g is bounded. Then there exists R > 0 such that

|g′(z)| ≥ |g(z)|
2π|z|

log
|g(z)|
R

for all z ∈ C\{0} which are not poles of g.

For the convenience of the reader we sketch the proof of Lemma 2. We choose R > |g(0)|
such that all finite critical and asymptotic values of g lie in |w| < R. As shown in [2,
Lemma 8] we may, increasing R if necessary, also assume that |g(z)| < R on some curve
Γ connecting 0 and ∞. The conclusion is trivial if |g(z)| ≤ R. Suppose that |g(z0)| > R
and put u0 = log z0 and v0 = log g(z0) for some branch of the logarithm. Then we can
define Φ(z) = log(g−1(ez)) as a single-valued function in H = {z : Re z > logR} such that
Φ(v0) = u0. Now Φ(H) ∩ log Γ = ∅ for all branches of the logarithm so that Φ(H) does not
contain any disk of radius greater than π. Thus

|Φ′(v)| < π

L(Re v − logR)

for v ∈ H, where L is Landau’s constant. If we express this inequality in terms of g and use
the inequality L ≥ 1

2
[1, p. 364] we obtain the conclusion, see [2, p. 173] for details.

3 Proof of the theorem and the corollary

Suppose that f has finite order and f(z)f ′′(z) − af ′(z)2 has only finitely many zeros. We
consider the function

g(z) = z − h f(z)

f ′(z)
(1)

where h = 1/(1− a). Then

g′(z) = 1− h+ h
f(z)f ′′(z)

f ′(z)2
= h

(
f(z)f ′′(z)

f ′(z)2
− a

)

has only finitely many zeros. Note that we have used here the hypothesis that a 6= (n+ 1)/n
because g′(z0) = h ((n+ 1)/n− a) if z0 is a pole of multiplicity n of f .

Moreover, g has finite order and thus, by Lemma 1, g has only finitely many asymptotic
values. We may assume without loss of generality that f ′(0) 6= 0 so that g(0) 6=∞. Then g
satisfies the hypotheses of Lemma 2. We deduce that if R is as in this lemma and if ζ is a
fixed point of g, then

|g′(ζ)| ≥ 1

2π
log
|ζ|
R
. (2)
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Now we suppose that f is not of the form f(z) = R(z)eQ(z) so that its logarithmic derivative
f ′/f and hence g are transcendental. We shall use standard notations and results from
Nevanlinna theory, see [6, 7]. Because

1

g(z)− z
= −1

h

f ′(z)

f(z)

we have

m

(
r,

1

g(z)− z

)
= m

(
r,
f ′

f

)
+O(1)

as r →∞. Thus

m

(
r,

1

g(z)− z

)
= O(log r)

as r → ∞ by the lemma on the logarithmic derivative. Nevanlinna’s first fundamental
theorem now implies that g(z) − z has infinitely many zeros; that is, g has infinitely many
fixed points. Let ζ be a fixed point of g. Clearly, ζ is either a zero or a pole of f . A
simple computation shows that g′(ζ) = 1 − h/m if ζ is a zero of multiplicity m of f and
g′(ζ) = 1 + h/m if ζ is a pole of multiplicity m of f . We deduce that |g′(ζ)| ≤ 1 + |h| for
all fixed points ζ of f . Clearly, this contradicts (2) if |ζ| is large enough. This contradiction
completes the proof of the theorem.

To prove the corollary, we suppose that f(z)f ′′(z)−af ′(z)2 has no zero, proceed as above,
and find that f has the form f(z) = R(z)eQ(z) and that g is a rational function such that g′

does not have zeros. Moreover, since f(z)f ′′(z)− af ′(z)2 6= 0, the zeros of f ′ are all simple.
Hence g does not have multiple poles. It is not difficult to see that these restrictions on g
imply that g is either constant or a linear transformation. If f ′/f is constant, then f has
the required form. If f ′/f is not constant, then

f ′(z)

f(z)
=

h

z − g(z)
→ 0

as z →∞. On the other hand,

f ′(z)

f(z)
=
R′(z)

R(z)
+Q′(z).

We conclude that Q′(z)→ 0 as z →∞. Hence Q′ = 0 so that Q is constant. This contradicts
the hypothesis that f is transcendental.

4 Remarks

1. The function g defined by (1) is the function iterated in the relaxed Newton method
for finding the zeros of f . Note, however, that we do not suppose here that |h−1| < 1 which
would be necessary to ensure that the iterates of g converge to zeros of f .

2. Mues [10, p. 333] considered essentially the same auxiliary function. More precisely,
he worked with g/h instead of g.

3. Lemma 1 and results from iteration theory concerning fixed points of multiplier 1
were used in [3] to prove that the equation f ′(z)f(z) = c has infinitely many solutions if f
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is a transcendental meromorphic function of finite order and c ∈ C\{0}. We remark that
instead of the results from iteration theory, one could also use Lemma 2. On the other hand,
although Lemma 2 and its proof do not involve iteration, this lemma has turned out to be
very useful in the context of iteration, compare [2, 4].
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