On the growth of meromorphic functions of infinite order *

Walter Bergweiler and Heinrich Bock

Abstract

Let f be a meromorphic function of infinite order, T(r, f) its Nevanlinna (or Ahlfors-Shimizu) characteristic, and M(r, f) its maximum modulus. It is proved that

$$\liminf_{r \to \infty} \frac{\log M(r, f)}{rT'(r, f)} \le \pi$$

and

$$\liminf_{r \to \infty} \frac{\log M(r, f)}{T(r, f)\psi(\log T(r, f))} = 0$$

if $\psi(x)/x$ is non-decreasing, $\psi'(x) \leq \sqrt{\psi(x)}$, and $\int_{-\infty}^{\infty} dx/\psi(x) < \infty$.

1 Introduction and results

Let f be a meromorphic function. We shall use the standard notation of Nevanlinna theory [6, 7, 9]. In particular, we denote by T(r, f) the Nevanlinna characteristic of f and by M(r, f) the maximum modulus of f.

In 1969, Govorov [5] proved an old conjecture of Paley which says that if f is entire and the order ρ of f satisfies $\frac{1}{2} \leq \rho < \infty$, then

$$\liminf_{r \to \infty} \frac{\log M(r, f)}{T(r, f)} \le \pi \rho.$$
(1)

Soon afterwards, Petrenko [10] proved that (1) remains valid for meromorphic functions, even if the order is replaced by the lower order.

The relative growth of T(r, f) and $\log M(r, f)$ for entire functions of infinite order has been considered by Chuang [2], Marchenko and Shcherba [8], and Dai, Drasin, and Li [3]. It is shown in these papers that if $\psi(x)$ is increasing and positive for $x \geq x_0 > 0$ and if

$$\int_{x_0}^{\infty} \frac{dx}{\psi(x)} < \infty, \tag{2}$$

then

$$\liminf_{r \to \infty} \frac{\log M(r, f)}{T(r, f)\psi(\log T(r, f))} = 0.$$
(3)

^{*}Ha appeared in J. Analyse Math. 64 (1994), 327-336

In [3], it is even proved that

$$\log M(r, f) = o(T(r, f)\psi(\log T(r, f))) \tag{4}$$

as $r \to \infty$ through a set of logarithmic density one. In [8] and [3], is also shown that the results are best possible in some sense.

The case that f is meromorphic has also been considered in [3] where it was shown that

$$\log M(r,f) = o(T(r,f)\psi(\log T(r,f))\log \psi(\log T(r,f))) \tag{5}$$

as $r \to \infty$ through a set of logarithmic density one.

A different approach has been taken in [1] where $\log M(r, f)$ has been compared with the derivative of T(r, f). More generally, $\log M(r, f)$ has been compared with $\gamma'(r)$ for an increasing and differentiable function $\gamma(r)$ satisfying $T(r, f) \leq \gamma(r)$ for all large r. It was shown in [1] that under these hypotheses

$$\liminf_{r \to \infty} \frac{\log M(r, f)}{r \gamma'(r)} \le \pi,$$
(6)

if f is an entire function of infinite order. Here the constant π is best possible.

Our first result is that this is true for meromorphic functions as well.

Theorem 1 Let f be a meromorphic function of infinite order and let γ be an increasing and differentiable function such that $T(r, f) \leq \gamma(r)$ for all large r. Then (6) holds.

In particular, we have

$$\liminf_{r \to \infty} \frac{\log M(r, f)}{rT'(r, f)} \le \pi.$$

This also holds with the Nevanlinna characteristic replaced by the Ahlfors-Shimizu characteristic.

Using similar methods as in the proof of Theorem 1 we obtain the following result.

Theorem 2 Let f be a meromorphic function of infinite order and let $\psi(x)$ be positive and continuously differentiable for $x \geq x_0 > 0$ such that $\psi(x)/x$ is non-decreasing, $\psi'(x) \leq \sqrt{\psi(x)}$, and (2) is satisfied. Then (3) holds.

We conjecture that, under the hypotheses of Theorem 2, (4) holds on a set of logarithmic density one so that the extra factor $\log \psi(\log T(r, f))$ occurring in (5) is not necessary.

We do not know whether the hypotheses made about ψ besides (2) are necessary. On the other hand, we note that these hypotheses are similar to those made in [8] and [3] in order to show that (2) is best possible.

Our proofs are based on the method of Petrenko as developed by Fuchs [4] and a lemma for real functions.

Acknowledgment. We would like to thank David Drasin for some very useful discussions on the topics of this paper.

2 A growth lemma for real functions

An important part in our proofs is played by the following lemma.

Lemma 1 Let $\Phi(x)$ be increasing and differentiable for $x \geq x_0 > 0$ and assume that

$$\limsup_{x \to \infty} \frac{\Phi(x)}{x} = \infty.$$

Then there exist sequences (x_j) , (M_j) , and (ε_j) satisfying $x_j \to \infty$, $M_j \to \infty$, $\varepsilon_j \to 0$, and $\Phi'(x_i) \to \infty \text{ as } j \to \infty \text{ such that}$

$$\Phi(x_j + h) \le \Phi(x_j) + \Phi'(x_j)h + \varepsilon_j$$

for $|h| \leq \frac{M_j}{\Phi'(x_j)}$.

If, in addition, ψ is given as in Theorem 2, then (x_j) can be chosen such that

$$\Phi'(x_j) = o(\psi(\Phi(x_j))$$

 $as j \to \infty$.

Without the claim about ψ , this lemma was proved in [1, Lemma 1]. The following proof uses a similar method. We remark that this additional claim about ψ is only needed for the proof of Theorem 2 while [1, Lemma 1] suffices for the proof of Theorem 1.

Proof of Lemma 1. We define p(t) by the differential equation $p'(t) = \psi(p(t))$ with initial condition $p(0) = x_0$. Then p(t) is increasing and standard lemmas of Borel type (compare [9, p. 253]) show that there exists $\beta > 0$ such that $\lim_{t\to\beta} p(t) = \infty$.

As in [1] we find for any given c > 0 arbitrarily large u such that $\Phi(5u) > 2\Phi(2u) > 2cu$. We choose $u > \max\{2x_0, \beta x_0/2\Phi(x_0)\}$ with this property and define

$$F_a(x) = \frac{\Phi(2u)}{x_0} p\left(\frac{ax}{u}\right)$$

for $0 < a \le \frac{\beta}{2}$ and $x_0 \le x < \frac{u\beta}{a}$. Then

$$F_{\beta/2}(x) = \frac{\Phi(2u)}{x_0} p\left(\frac{\beta x}{2u}\right) \ge \frac{\Phi(2u)}{x_0} p\left(0\right) = \Phi(2u) \ge \Phi(x)$$

for $x_0 \leq x \leq 2u$. Hence the set

$$E = \left\{ a : 0 < a \le \frac{\beta}{2}, F_a(x) \ge \Phi(x) \text{ for } x_0 \le x < \frac{u\beta}{a} \right\}$$

is not empty. We define $b = \inf E$. To find a lower bound for b we note that there exists α satisfying $0 < \alpha < \beta$ such that $p(\alpha) = 2x_0$. We deduce that if $0 < \alpha < \frac{\alpha}{5}$, then

$$F_a(5u) = \frac{\Phi(2u)}{x_0} p(5a) \le 2\Phi(2u) \le \Phi(5u).$$

Hence $\frac{\alpha}{5} \leq b \leq \frac{\beta}{2}$.

As in [1] we define $F = F_b$ and deduce that there exists $v \in (2u, \frac{u\beta}{b})$ such that $F(v) = \Phi(v)$, $F'(v) = \Phi'(v)$, and $F(x) \ge \Phi(x)$ for $x \in (2u, \frac{u\beta}{b})$. We note that

$$F'(v) = \frac{\Phi(2u)}{x_0} p'\left(\frac{bv}{u}\right) \frac{b}{u} \ge \frac{\Phi(2u)b}{x_0 u} p'(0) = \frac{\Phi(2u)b\psi(x_0)}{x_0 u} \ge \frac{cb\psi(x_0)}{x_0} \ge \frac{c\alpha\psi(x_0)}{5x_0}$$

so that F'(v) can be made arbitrarily large by choosing c large.

Using $\psi'(x) \leq \sqrt{\psi(x)}$ and $u > \beta x_0/2\Phi(x_0) \geq bx_0/\Phi(x_0)$ one can show that $F''(x) \leq F'(x)^{3/2}$. Let M be a positive constant. We deduce that if $F'(v) > M^2$ and $0 \leq h \leq \frac{M}{F'(v)}$, then

$$1 - \sqrt{\frac{F'(v)}{F'(v+h)}} = \frac{\sqrt{F'(v)}}{2} \int_{v}^{v+h} \frac{F''(x)}{F'(x)^{3/2}} dx \le \frac{\sqrt{F'(v)}}{2} \int_{v}^{v+h} dx \le \frac{M}{2\sqrt{F'(v)}}$$

so that $F'(v+h) \leq (1+\frac{\varepsilon}{M})F'(v)$ for any given $\varepsilon > 0$, provided c is large enough. We deduce that

$$\begin{split} \Phi(v+h) & \leq F(v+h) \\ & = F(v) + \int_v^{v+h} F'(x) dx \\ & \leq \Phi(v) + F'(v+h)h \\ & \leq \Phi(v) + \left(1 + \frac{\varepsilon}{M}\right) F'(v)h \\ & = \Phi(v) + \Phi'(v)h + \varepsilon \frac{F'(v)h}{M} \\ & \leq \Phi(v) + \Phi'(v)h + \varepsilon \end{split}$$

for $0 \le h \le \frac{M}{F'(v)}$. The case $-\frac{M}{F'(v)} \le h < 0$ is similar so that

$$\Phi(v+h) \le \Phi(v) + \Phi'(v)h + \varepsilon$$

holds for $|h| \leq \frac{M}{F'(v)} = \frac{M}{\Phi'(v)}$. Since ε and M were arbitrary, the conclusion follows.

3 Proofs of Theorems 1 and 2

Proof of Theorem 1. We define $\Phi(x) = \log \gamma(e^x)$. Since f has infinite order, the hypotheses of Lemma 1 are satisfied. Choose $(x_j), (M_j)$ and (ε_j) according to Lemma 1 and define $\rho_j = e^{x_j}$ and $\mu_j = \Phi'(x_j)$. Then

$$\gamma(r) \le (1 + \varepsilon_j)\gamma(\rho_j) \left(\frac{r}{\rho_j}\right)^{\mu_j}$$
 (7)

for $\left|\log\frac{r}{\rho_j}\right| \leq \frac{M_j}{\mu_j}$. Lemma 1 says that $M_j \to \infty$. Replacing, if necessary, (M_j) by a sequence of smaller numbers, we may achieve that $M_j \to \infty$ as slowly as we please. Also, $\mu_j \to \infty$ so that we may assume that $\mu_j \geq \frac{1}{2}$ for all j. We define (p_j) and (P_j) by

$$\log \frac{\rho_j}{p_j} = \log \frac{P_j}{\rho_j} = \frac{M_j}{\mu_j}$$

so that (7) holds for $p_j \leq r \leq P_j$. We consider the set

$$A_{j} = \left\{ r; \rho_{j} \leq r \leq P_{j}, \gamma(r) \leq \frac{1}{\sqrt{M_{j}}} \gamma(\rho_{j}) \left(\frac{r}{\rho_{j}}\right)^{\mu_{j}} \right\}$$

and define $R_j = P_j$ if $A_j = \emptyset$ and $R_j = \min A_j$ otherwise. Similarly, we consider

$$B_{j} = \left\{ r; p_{j} \leq r \leq \rho_{j}, \gamma(r) \leq \frac{1}{\sqrt{M_{j}}} \gamma(\rho_{j}) \left(\frac{r}{\rho_{j}}\right)^{\mu_{j}} \right\}$$

and define $r_j = p_j$ if $B_j = \emptyset$ and $r_j = \max B_j$ otherwise. We also define $S_j = e^{-\frac{1}{\mu_j}} R_j$, $T_j = e^{-\frac{2}{\mu_j}} R_j$, $t_j = r_j$, and $s_j = e^{-\frac{1}{\mu_j}} t_j$. Then $s_j < t_j < \rho_j < T_j < S_j < R_j$.

Following Fuchs [4, equation (5.7)] we obtain from Petrenko's formula:

$$\int_{t_{j}}^{T_{j}} u^{-\mu_{j}-1} \log M(u,f) du$$

$$< \pi \mu_{j} \int_{s_{j}}^{S_{j}} r^{-\mu_{j}-1} m(r,f) dr$$

$$+ \frac{\pi}{\mu_{j}} \sum_{s_{j} \leq |b| \leq S_{j}} |b|^{-\mu_{j}}$$

$$+ A\mu_{j} \left(s_{j}^{2\mu_{j}} \int_{s_{j}}^{\infty} u^{-3\mu_{j}-1} du \ T(t_{j},f) + S_{j}^{-2\mu_{j}} \int_{0}^{S_{j}} u^{\mu_{j}-1} du \ T(S_{j},f) \right) \tag{8}$$

where the sum is taken over all poles of f in the annulus $s_j \leq |z| \leq S_j$ and where A is an absolute constant.

Here we have taken $\mu = \mu_j$ and $\gamma = 2\mu_j$ which is permissible since $\mu_j \geq \frac{1}{2}$. Fuchs proves (8) for the case that $t_j = 2s_j$ and $S_j = 2T_j$, but the general case $s_j < t_j < T_j < S_j$ can be proved by the same method. Fuchs also requires $\gamma > 2\mu$, but the result remains valid if $\gamma = 2\mu$.

Following Fuchs we have

$$\sum_{s_{j} \leq |b| \leq S_{j}} |b|^{-\mu_{j}}$$

$$\leq S_{j}^{-\mu_{j}} n(S_{j}, f) + \mu_{j} \int_{s_{j}}^{S_{j}} t^{-\mu_{j}-1} n(t, f) dt$$

$$\leq S_{j}^{-\mu_{j}} n(S_{j}, f) + \mu_{j} S_{j}^{-\mu_{j}} N(S_{j}, f) + \mu_{j}^{2} \int_{s_{j}}^{S_{j}} t^{-\mu_{j}-1} N(t, f) dt.$$

Since

$$N(R_j, f) \geq \int_{S_j}^{R_j} \frac{n(t, f)}{t} dt \geq n(S_j, f) \int_{S_j}^{R_j} \frac{dt}{t}$$
$$= n(S_j, f) \log \frac{R_j}{S_j} = \frac{1}{\mu_j} n(S_j, f)$$

and $S_i^{-\mu_j} = eR_i^{-\mu_j}$ we obtain

$$\sum_{s_j \le |b| \le S_j} |b|^{-\mu_j} \le 2e\mu_j R_j^{-\mu_j} N(R_j, f) + \mu_j^2 \int_{s_j}^{S_j} t^{-\mu_j - 1} N(t, f) dt.$$

Substituting this in (8) and computing the last two integrals in (8) we deduce that

$$\int_{t_{j}}^{T_{j}} u^{-\mu_{j}-1} \log M(u,f) du < \pi \mu_{j} \int_{s_{j}}^{S_{j}} r^{-\mu_{j}-1} T(r,f) dr + B \left(t_{j}^{-\mu_{j}} T(t_{j},f) + R_{j}^{-\mu_{j}} T(R_{j},f) \right)$$

for some absolute constant B. We wish to replace the integral on the right side by an integral from t_i to T_i . Therefore we note that

$$\mu_j \int_{s_i}^{t_j} r^{-\mu_j - 1} T(r, f) dr \le \mu_j T(t_j, f) \int_{s_i}^{t_j} r^{-\mu_j - 1} dr \le T(t_j, f) s_j^{-\mu_j} = e t_j^{-\mu_j} T(t_j, f)$$

Similarly,

$$\mu_j \int_{T_j}^{S_j} r^{-\mu_j - 1} T(r, f) dr \le 2e R_j^{-\mu_j} T(R_j, f).$$

Hence

$$\int_{t_{j}}^{T_{j}} r^{-\mu_{j}-1} \log M(r, f) dr$$

$$\leq \pi \mu_{j} \int_{t_{j}}^{T_{j}} r^{-\mu_{j}-1} T(r, f) dr + C \left(t_{j}^{-\mu_{j}} T(t_{j}, f) + R_{j}^{-\mu_{j}} T(R_{j}, f) \right)$$

where C is an absolute constant. Of course, this implies that

$$\int_{t_{j}}^{T_{j}} r^{-\mu_{j}-1} \log M(r,f) dr$$

$$\leq \pi \mu_{j} \int_{t_{i}}^{T_{j}} r^{-\mu_{j}-1} \gamma(r) dr + C \left(t_{j}^{-\mu_{j}} \gamma(t_{j}) + R_{j}^{-\mu_{j}} \gamma(R_{j}) \right). \tag{9}$$

We want to show that the second term on the right hand side of (9) is small compared with the first one. To this end, we define

$$I_j = \mu_j \int_{t_i}^{T_j} r^{-\mu_j - 1} \gamma(r) dr$$

and we note that

$$I_{j} \geq \mu_{j} \int_{\rho_{j}}^{T_{j}} r^{-\mu_{j}-1} \gamma(r) dr$$

$$\geq \mu_{j} \gamma(\rho_{j}) \left(\rho_{j}^{-\mu_{j}} - T_{j}^{-\mu_{j}} \right). \tag{10}$$

If $A_j \neq \emptyset$, then

$$\frac{1}{\sqrt{M_j}}\gamma(\rho_j)\left(\frac{R_j}{\rho_j}\right)^{\mu_j} = \gamma(R_j) \ge \gamma(\rho_j)$$

so that

$$\left(\frac{T_j}{\rho_j}\right)^{\mu_j} = e^{-2} \left(\frac{R_j}{\rho_j}\right)^{\mu_j} \ge e^{-2} \sqrt{M_j} \to \infty.$$

Hence (10) implies that

$$I_j \ge (1 - o(1))\gamma(\rho_j)\rho_j^{-\mu_j}.$$
 (11)

But if $A_j = \emptyset$, then

$$\left(\frac{T_j}{\rho_j}\right)^{\mu_j} = e^{-2} \left(\frac{R_j}{\rho_j}\right)^{\mu_j} = e^{M_j - 2}$$

and (11) follows again from (10). We now show that

$$\gamma(R_j)R_j^{-\mu_j} = o(I_j). \tag{12}$$

This follows immediately from the definition of R_j if $A_j \neq \emptyset$. But if $A_j = \emptyset$, then

$$I_{j} \geq \mu_{j} \int_{\rho_{j}}^{T_{j}} \frac{1}{\sqrt{M_{j}}} \gamma(\rho_{j}) \left(\frac{r}{\rho_{j}}\right)^{\mu_{j}} r^{-\mu_{j}-1} dr$$

$$= \mu_{j} \frac{1}{\sqrt{M_{j}}} \gamma(\rho_{j}) \rho_{j}^{-\mu_{j}} \log \frac{T_{j}}{\rho_{j}}$$

$$= \frac{1}{\sqrt{M_{j}}} \gamma(\rho_{j}) \rho_{j}^{-\mu_{j}} (M_{j} - 2)$$

$$\geq \frac{1}{1 + \varepsilon_{j}} \frac{M_{j} - 2}{\sqrt{M_{j}}} \gamma(R_{j}) R_{j}^{-\mu_{j}}$$

$$(13)$$

and (12) follows.

Next we show that

$$\gamma(t_j)t_j^{-\mu_j} = o(I_j). \tag{14}$$

If $B_j \neq \emptyset$, this follows immediately from (11). But if $B_j = \emptyset$, then we obtain similarly as in (13)

$$\begin{split} I_j & \geq & \mu_j \int_{t_j}^{\rho_j} \frac{1}{\sqrt{M_j}} \gamma(\rho_j) \left(\frac{r}{\rho_j}\right)^{\mu_j} r^{-\mu_j - 1} dr \\ & = & \mu_j \frac{1}{\sqrt{M_j}} \gamma(\rho_j) \rho_j^{-\mu_j} \log \frac{\rho_j}{t_j} \\ & = & \sqrt{M_j} \gamma(\rho_j) \rho_j^{-\mu_j} \\ & \geq & \frac{\sqrt{M_j}}{1 + \varepsilon_j} \gamma(t_j) t_j^{-\mu_j} \end{split}$$

and (14) follows.

Combining (9), (12), and (14) we obtain

$$\int_{t_i}^{T_j} r^{-\mu_j - 1} \log M(r, f) dr \le (1 + o(1)) \pi I_j. \tag{15}$$

Integration by parts shows that

$$I_{j} = \gamma(t_{j})t_{j}^{-\mu_{j}} - \gamma(T_{j})T_{j}^{-\mu_{j}} + \int_{t_{j}}^{T_{j}} r^{-\mu_{j}-1}r\gamma'(r)dr.$$
(16)

(Note that γ is absolutely continuous because it is increasing and differentiable.) Combining (14), (15), and (16) we obtain

$$\int_{t_j}^{T_j} r^{-\mu_j - 1} \log M(r, f) dr \le (1 + o(1)) \pi \int_{t_j}^{T_j} r^{-\mu_j - 1} r \gamma'(r) dr$$

It follows that there exist $\xi_j \in [t_j, T_j]$ such that

$$\log M(\xi_j, f) \le (1 + o(1))\pi \xi_j \gamma'(\xi_j) \tag{17}$$

We may assume that M_j tends to ∞ so slowly that $p_j \to \infty$. Because $\xi_j \geq t_j \geq p_j$ this implies that $\xi_j \to \infty$. Hence Theorem 1 follows from (17).

Proof of Theorem 2. We proceed as in the proof of Theorem 1 to obtain (15), choosing $\gamma(r) = T(r, f)$ in the definition of I_j . It follows that there exists $\zeta_j \in [t_j, T_j]$ such that

$$\log M(\zeta_j, f) \le (1 + o(1))\pi \mu_j T(\zeta_j, f)$$

By Lemma 1 we have

$$\mu_i = \Phi'(x_i) = o(\psi(\Phi(x_i))) = o(\psi(\log T(\rho_i, f)))$$

Hence

$$\log M(\zeta_j, f) = o(\psi(\log T(\rho_j, f))T(\zeta_j, f))$$
(18)

We shall prove that

$$\psi(\log T(\rho_j, f)) \le 2\psi(\log T(t_j, f)) \tag{19}$$

for sufficiently large j. Then Theorem 2 follows immediately from (18) and (19) because $t_j \leq \zeta_j$.

It remains to prove (19). We have

$$\psi(\log T(\rho_{j}, f)) - \psi(\log T(t_{j}, f))$$

$$= \int_{\log T(t_{j}, f)} \psi'(x) dx$$

$$\leq \int_{\log T(t_{j}, f)} \sqrt{\psi(x)} dx$$

$$\leq \sqrt{\psi(\log T(\rho_{j}, f))} \log \frac{T(\rho_{j}, f)}{T(t_{i}, f)}$$

and

$$\frac{T(\rho_j, f)}{T(t_j, f)} \le \sqrt{M_j} \left(\frac{\rho_j}{t_j}\right)^{\mu_j} \le \sqrt{M_j} \left(\frac{\rho_j}{p_j}\right)^{\mu_j} = \sqrt{M_j} e^{M_j}$$

Hence

$$\psi(\log T(\rho_j, f)) - \psi(\log T(t_j, f)) \le \sqrt{\psi(\log T(\rho_j, f))} \log(\sqrt{M_j} e^{M_j})$$
(20)

By choosing M_j slowly increasing, we can achieve that

$$\log(\sqrt{M_j}e^{M_j}) \le \frac{1}{2}\sqrt{\psi(\log T(\rho_j, f))}.$$
(21)

Combining (20) and (21) we deduce (19). This completes the proof of Theorem 2.

References

- [1] W. Bergweiler, Maximum modulus, characteristic, and area on the sphere, Analysis 10 (1990), 163-176.
- [2] C. T. Chuang, Sur la croissance des fonctions, Kexue Tongbao 26 (1981), 677-684.
- [3] C. J. Dai, D. Drasin, and B. Q. Li, On the growth of entire and meromorphic functions of infinite order, *J. Analyse Math.* 55 (1990), 217-228. Correction: *J. Analyse Math.* 57 (1991), 299.
- [4] W. H. J. Fuchs, Topics in Nevanlinna theory, in *Proceedings of the NRL conference on classical function theory*, U. S. Government Printing Office, Washington, D. C., 1970, 1-32.
- [5] N. V. Govorov, The Paley conjecture, Funkcional. Anal. i. Priložen 3 (1969), 41-45.

- [6] W. K. Hayman, Meromorphic Functions, Oxford: Clarendon Press 1964.
- [7] G. Jank and L. Volkmann, Einführung in die Theorie der ganzen und meromorphen Funktionen mit Anwendungen auf Differentialgleichungen, Basel Boston Stuttgart: Birkhäuser 1985.
- [8] I. I. Marchenko and A. I. Shcherba, Growth of entire functions, Sib. Math. J. 25 (1984), 598-605.
- [9] R. Nevanlinna, Analytic functions, New York Heidelberg Berlin: Springer 1970.
- [10] V. N. Petrenko, Growth of functions of finite lower order, Math. USSR Izvestija 3 (1969), 391-432.

Lehrstuhl II für Mathematik RWTH Aachen D-52056 Aachen Germany

Email: bergw@math2.rwth-aachen.de, bock@math2.rwth-aachen.de