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Abstract

Let f be a meromorphic function of infinite order, T'(r, f) its Nevanlinna (or
Ahlfors-Shimizu) characteristic, and M (r, f) its maximum modulus. It is proved that

.. dogM(r, f)
b ot = e ) =7

and
log M(r, f)

lim inf =0

oo T(r, f)p(log T(r, f))
if 1(z)/z is non-decreasing, ¥'(z) < /9 (z), and [ dz /() < oco.

1 Introduction and results

Let f be a meromorphic function. We shall use the standard notation of Nevanlinna theory
[6, 7, 9]. In particular, we denote by T'(r, f) the Nevanlinna characteristic of f and by
M (r, f) the maximum modulus of f.

In 1969, Govorov [5] proved an old conjecture of Paley which says that if f is entire and
the order p of f satisfies % < p < o0, then

lim inf < mp.

7—00 T(T, f)
Soon afterwards, Petrenko [10] proved that (1) remains valid for meromorphic functions,
even if the order is replaced by the lower order.

The relative growth of T'(r, f) and log M (r, f) for entire functions of infinite order has
been considered by Chuang [2], Marchenko and Shcherba [8], and Dai, Drasin, and Li [3].
It is shown in these papers that if ¢(z) is increasing and positive for x > 24 > 0 and if

o d

zo w(ﬂi)

then log M(r. )
L og M(r, _
BT Nelog T ) @
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In [3], it is even proved that

log M(r, ) = o(T(r, f)4(log T(r, f))) (4)

as 7 — oo through a set of logarithmic density one. In [8] and [3], is also shown that the
results are best possible in some sense.
The case that f is meromorphic has also been considered in [3] where it was shown that

log M(r, f) = o(T(r, f)(log T(r, f)) log  (log T'(r, f))) (5)

as r — oo through a set of logarithmic density one.

A different approach has been taken in [1] where log M (r, f) has been compared with
the derivative of T'(r, f). More generally, log M (r, f) has been compared with ~'(r) for an
increasing and differentiable function «(r) satisfying T'(r, f) < ~(r) for all large r. It was
shown in [1] that under these hypotheses

lim inf 71(% M(r, f)

T <, (6)

if f is an entire function of infinite order. Here the constant 7 is best possible.
Our first result is that this is true for meromorphic functions as well.

Theorem 1 Let f be a meromorphic function of infinite order and let v be an increasing
and differentiable function such that T(r, f) < ~(r) for all large . Then (6) holds.

In particular, we have
log M
lim inf ~2— ") (. /) <7
r—oo (1, f)
This also holds with the Nevanlinna characteristic replaced by the Ahlfors-Shimizu charac-
teristic.
Using similar methods as in the proof of Theorem 1 we obtain the following result.

Theorem 2 Let f be a meromorphic function of infinite order and let 1)(x) be positive and
continuously differentiable for x > xq > 0 such that (x)/x is non-decreasing, ¢¥'(x) <

Y(x), and (2) is satisfied. Then (3) holds.

We conjecture that, under the hypotheses of Theorem 2, (4) holds on a set of logarithmic
density one so that the extra factor log(log T'(r, f)) occuring in (5) is not necessary.

We do not know whether the hypotheses made about ¢ besides (2) are necessary. On
the other hand, we note that these hypotheses are similar to those made in [8] and [3] in
order to show that (2) is best possible.

Our proofs are based on the method of Petrenko as developed by Fuchs [4] and a lemma
for real functions.

Acknowledgment. We would like to thank David Drasin for some very useful discussions
on the topics of this paper.



2 A growth lemma for real functions

An important part in our proofs is played by the following lemma.

Lemma 1 Let ®(x) be increasing and differentiable for x > xq > 0 and assume that

d
lim sup (z)

T—00 X

= OQ.

Then there ezist sequences (z;), (M;), and (¢;) satisfying x; — oo, M; — o0, £; = 0, and
®'(z;) — 0o as j — 0o such that

O(x; + h) < O(x;) + D' (x)h + €5

M.
for |h| < q,,(;j).

If, in addition, ¢ is given as in Theorem 2, then (z;) can be chosen such that
®'(z;) = o(1(2(z;))
as j — o0.

Without the claim about 1, this lemma was proved in [1, Lemma 1]. The following proof
uses a similar method. We remark that this additional claim about v is only needed for the
proof of Theorem 2 while [1, Lemma 1] suffices for the proof of Theorem 1.

Proof of Lemma 1. We define p(t) by the differential equation p'(t) = ¢ (p(t)) with initial
condition p(0) = xy. Then p(t) is increasing and standard lemmas of Borel type (compare
[9, p. 253]) show that there exists 3 > 0 such that lim,,5 p(t) = oco.

As in [1] we find for any given ¢ > 0 arbitrarily large u such that ®(5u) > 2®(2u) > 2cu.
We choose u > max{2x, Bx¢/2®(zo)} with this property and define

Fo(z) = (I)(Qu)p (ﬂ)

u

f0r0<a§§andx0§x<%. Then

Fppa(z) = (I)Zu)p (%) > (D(;Ou)p (0) = ®(2u) > &(x)

for zp < z < 2u. Hence the set

yFo(z) > ®(x) for zp <z < ?}

ECT RS

E:{a:0<a§

is not empty. We define b = inf E. To find a lower bound for b we note that there exists «
satisfying 0 < oo < 8 such that p(a) = 2z9. We deduce that if 0 < a < §, then

O (2u)

F,(5u) = .

p(ba) < 28(2u) < ®(5u).

Hence § < b <
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As in [1] we define F' = Fj and deduce that there exists v € (2u, %) such that F(v) =
®(v), F'(v) = ®'(v), and F(z) > ®(x) for z € (2u, "—bﬁ) We note that

Fi(v) = Mp, (b_v> b ®(2u)b (0) = (2u)bip(wo) . chiplo) - conp(a)

D
Zo u

U ToU Tol To —  bxp

so that F'(v) can be made arbitrarily large by choosing ¢ large.
Using ¢'(z) < (/¥(z) and u > Bx¢/2®(zg) > bro/P(xy) one can show that F"(z) <
F'(z)*?. Let M be a positive constant. We deduce that if F'(v) > M? and 0 < h < L

then ©r
_ \/F '(v) poth F"(g \/ /

_JF'(Hh)_ 2 Jo Fl(z )3/2

F’()

so that F'(v+h) < (14 57)F'(v) for any given € > 0, provided c is large enough. We deduce
that

®(v+h) < F(v+h)
— F(v) +/ F'(2)dz
< ®(v)+ F'(v+h)h

(
(

IN

d(v) + ( M) F'(v)h
F'(v)h
M

P(v) + D' (v)h+¢
O(v) + P'(v)h+¢

VAN

for 0 < h < 4. The case — < h < 0 is similar so that

Fi(v)” (
O(v+h) <)+ D' (v)h+e

holds for |h| < . Since ¢ and M were arbitrary, the conclusion follows.

F’(v CD’

3 Proofs of Theorems 1 and 2

Proof of Theorem 1. We define &(z) = log~y(e”). Since f has infinite order, the hypotheses
of Lemma 1 are satisfied. Choose (z;), (M;) and (g;) according to Lemma 1 and define
pj = €% and p; = ®'(z;). Then

16 < 1k e(o) (L) @

<M Lemma 1 says that M; — oo. Replacing, if necessary, (M;) by a sequence
]
of smaller numbers, we may achieve that M; — oo as slowly as we please. Also, p; — 00 s0

that we may assume that z; > 2 for all j. We define (p;) and (P;) by

for ‘log pij

P, M,
log Pi =log—L ="

p] Pj Hj



so that (7) holds for p; <r < P;. We consider the set

Aj = {W)j <71 < Pjyy(r) < \/jw»]v(ﬂg) (;)W}

and define R; = P; if A; = () and R; = min A; otherwise. Similarly, we consider

Hj
Bj = p < T < pja < pj < )
M; Pj

1
and define r; = p; if B; =0 and r; = max B; otherwise. We also define S; =e * R;,T; =

JR],t =rjand s, =€ "Jt Then s; <t; < p; <T; < 5; < R;.
Following Fuchs [4, equation (5.7)] we obtain from Petrenko S formula:
T
/ w5 log M (u, f)du
tj
Sj
< Wuj/r_“j_lm(r, fdr

33

T S E

J 5;<[b|<S;
o] S
+ Ap; s?“j /u_?’“f'_ldu T(t;, f)+ SJ-_QM /U“j_ldu T(S;, f) (8)
S 0

where the sum is taken over all poles of f in the annulus s; < [2| < S; and where A is an
absolute constant.

Here we have taken u = u; and v = 2u; which is permissible since j; > % Fuchs proves
(8) for the case that t; = 2s; and S; = 27T}, but the general case s; < t; < T; < S; can
be proved by the same method. Fuchs also requires v > 2u, but the result remains valid if
¥ = 2u.

Following Fuchs we have

> bl

5;<|b|<S;
< S7n(S), f) +ug/t“’ n(t, f)dt
S;
< ST ) + SN (S )+ [ TING f)de
Since
n(t, f) 7t
n b)
NR ) =[S aez s, [ S
S; S
R; 1
= n(Sjaf)log#__n(SJ’f)
J J



and Sj_“j = eRj_“j we obtain

S

Yo b < 2ep; R N(Ry, f) + 4 / t#IN(t, f)dt.

55 <[b|<S; 5

Substituting this in (8) and computing the last two integrals in (8) we deduce that

7 %
/ w i log M (u, f)du < 7 / r T, f)dr + B (5T (4, f) + Ry T(R;, f))
S

tj

for some absolute constant B. We wish to replace the integral on the right side by an
integral from ¢; to 7. Therefore we note that

t; t;

J
uj/rf“jflT(r, fdr < ,ujT(tj,f)/rf“j*ldr < T(tj,f)s;“j = et;“jT(tj,f)
8j 8j
Similarly,
Sj
,uj/r_“f_lT(r, fdr < QeRj_“jT(Rj,f).
T;
Hence
T}
/r_"j_l log M (r, f)dr
tj
T
< g / r YT, f)dr + C (T (4, f) + Ry T(R;, f))
tj

where (' is an absolute constant. Of course, this implies that

/r_“f_llog M(r, f)dr
tj
T
< mpy [Ty dr + O (6() + B (R)) (9)
tj

We want to show that the second term on the right hand side of (9) is small compared with
the first one. To this end, we define

T
I; = /T‘“J"W(?‘)dr
t]



and we note that

If A; # 0, then

so that

Hence (10) implies that

But if A; =, then

I > (1= o(1))v(pj)p; "

e

(Tj
Pj

&) o _ eMj—Z
Pj

and (11) follows again from (10). We now show that

This follows immediately from the definition of R; if A; # (. But if A; = ), then

and (12) follows.
Next we show that

v

v

V(R R = o(I).

7

1

1

r\" )
uj/—v(pj) <—> rot T dr
N Pi

—H logg

ti——="(pj)p
’ \/ﬁ] 2 Pj

1

1

- No- M (M — 2
\/E'Y(pj)pj ( J )
M; -2

1+€j \/ﬁ]

v(R;)R; "

(10)

(11)

(12)

(13)
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If B; # 0, this follows immediately from (11). But if B; = (), then we obtain similarly as in
(13)

v
B

and (14) follows.
Combining (9), (12), and (14) we obtain

7

[ og M, fdr < (1+ o(1)) . (15)

tj

Integration by parts shows that

T
I=t)5" =T + [ty (). (16)

tj

(Note that + is absolutely continuous because it is increasing and differentiable.) Combining
(14), (15), and (16) we obtain

T 7

/T‘“J’_llog M(r, f)dr < (1+ 0(1))7r/7“_“j_17“7'(7“)d7“

t tj
It follows that there exist &; € [t;, ;] such that
log M(&;, f) < (1 +0(1))m&;7'(€)) (17)

We may assume that M; tends to oo so slowly that p; — occ. Because §; > t; > p; this
implies that £ — co. Hence Theorem 1 follows from (17).

Proof of Theorem 2. We proceed as in the proof of Theorem 1 to obtain (15), choosing
v(r) =T (r, f) in the definition of I;. It follows that there exists (; € [t;,7}] such that

log M (G5, f) < (14 o(1))mpiT(Gj f)

By Lemma 1 we have

pi = @'(x;) = o(¥(2(x;))) = o(y(log T (p;, f)))

Hence
log M (G5, f) = o(¢(log T'(p;, £))T'(Cjs f)) (18)
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We shall prove that

Y(log T (pj, f)) < 2¢(log T'(t;, f)) (19)

for sufficiently large j. Then Theorem 2 follows immediately from (18) and (19) because
t; < ;-
It remains to prove (19). We have

Y(logT(pj, f)) — ¥(log T(t;, f))

log T(pj,f)
= ' (z)dx
log T'(t;,f)
log T(p;,f)
< Y(z)dz
log T'(t;,f)
< \/w(logT(pj,f))logﬁ
and
T(pj, f) p p
T(tj-,f) SF( ]> <r< J) = /M
Hence
$(log T(p;, f)) — (108 T(t;, f)) < \Jw(log T(p;, ) log(/M;e™) (20)

By choosing M; slowly increasing, we can achieve that

log(/Me™) < £\/b(1oa T (s, 1)) (21)

Combining (20) and (21) we deduce (19). This completes the proof of Theorem 2.
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