ON THE ZEROS OF THE SECOND DERIVATIVE OF REAL ENTIRE FUNCTIONS

W. Bergweiler and W. H. J. Fuchs*

1. Introduction and Preliminaries.

An entire (or meromorphic) function f(z) is called **real**, if for all $z \in \mathbb{C}$, $f(\overline{z}) = \overline{f(z)}$.

The study of real entire functions all of whose zeros are real has a long history. [See [SS] for a brief account.] In particular A. Wiman raised the question whether for such functions of order > 2, f''(z) always has non-real zeros. He formulated a precise conjecture about the number $c(\rho)$ of non-real zeros for an f(z) of finite order ρ , giving an explicit formula for $c(\rho)$ which showed that $c(\rho) \to \infty$ as $\rho \to \infty$.

Wiman's conjecture was made in 1914, it remained open until the work of Sheil–Small in 1989 [SS].

For the case of infinite order Sheil-Small made the

Conjecture. Let f(z) be a real entire function of infinite order all of whose zeros are real. Then f''(z) has infinitely many non-real zeros.

The conjecture is known to be true, if one of the following conditions holds:

- (1) All zeros of f'(z) are real. [HW]
- (2) $\limsup_{r\to\infty} \frac{\log\log M(r,f)}{\log r} = \infty$. [LO]

In this paper we shall add to these results the

Theorem. The conjecture is true, if f(z) has only a finite number of zeros.

This was already proved by Sheil-Small for functions of the form $Q(z) \exp(ez + P(z))$, [SS], where P and Q are polynomials [SS].

We write C for a positive number which depends only on the choice of the function f(z). The value of C can vary from one occurrence to the next.

From now on f(z) denotes a real entire function of finite order all of whose zeros are real, which has only a finite number of zeros and whose second derivative has only a finite number of non-real zeros. Also f'(z) has a non-real zero.

We shall show that such an f(z) can not exist. We shall need the 'Levin-Ostrovski representation' [LO]

(3)
$$\frac{f'(z)}{f(z)} = \psi(z)\varphi(z),$$

^{*}The authors gratefully acknowledge support by the Alexander von Humboldt Foundation and the National Science Foundation.

where $\psi(z)$ is a real meromorphic function with poles at the zeros of f(z) which satisfies

$$\Im \psi(z) > 0$$

in the half-plane

$$H = \{ z = x + iy \mid y > 0 \}.$$

The function $\varphi(z)$ is a real entire function. By (2) we may assume that

$$\limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log r} < \infty.$$

It is known that under this condition

(4)
$$\log M(r,\varphi) = 0(r\log r) \qquad (r \to \infty)$$

and that there are positive constants c_1 , c_2 such that

(5)
$$c_1 \frac{|\sin \theta|}{r} < |\psi(rei\theta)| < c_2 \frac{r}{|\sin \theta|} \quad (r > 0, -\pi < \theta < \pi).$$

[For details see [HW; p. 499].]

Also, since f(z) has only a finite number of zeros,

(6)
$$\psi(z) = 0(|z|) \quad (|z| > R).$$

[See **HW**; (1.17); p. 500]

2. Lemmas.

Notation. For $0 < \delta < \pi/2$ we put

$$S_{\delta,R} = \{ z \mid \delta \le \arg z \le \pi - \delta, \ |z| \ge R \}.$$

For a function g(z) defined in a domain D

$$M(r,g,D) = \sup_{z \in D, |z| = r} |g(z)|.$$

We define

$$F(z) = z - \frac{f(z)}{f'(z)} = U(z) + iV(z).$$

Then

$$F'(z) = f(z)f''(z)/f'2(z),$$

so that, for suitably large R,

$$F'(z) \neq 0 \quad (|z| \ge R).$$

Lemma 1. [Slight extension of **SS**, Theorem 4, with the same proof.] F(z) has an asymptotic path L in the upper half plane

$$H = \{z = x + iy \mid y > 0\}$$

on which F(z) tends to $\alpha \in H$.

Lemma 2. [S, Theorem 5.1] Let $D \subset \mathbb{C}$ be a domain. Let \mathcal{G} be the family of functions g(z) meromorphic in D and satisfying $gg'' \neq 0$ in D.

Then

$$\mathcal{H} = \{ g'(z)/g(z) \mid g \in \mathcal{G} \}$$

is a normal family in D.

Lemma 3. If

$$|rei\theta f'(rei\theta)/f(rei\theta)| < A \quad (>1)$$

for a θ satisfying $\delta \leq \theta \leq \pi - \delta$ and an r > 2R, then for ζ in

$$K = \left\{ \zeta \mid \frac{1}{2} \le |\zeta| \le 2, \ \delta \le \arg \zeta \le \pi - \delta \right\}$$

$$|r\zeta f'(\zeta)/f(r\zeta)| < C_1 A$$
,

where C_1 is a constant depending only on the choice of f and of δ .

<u>Proof</u>: Suppose the lemma were false. Then we can find an increasing sequence of positive numbers a_n and a sequence of complex numbers $\zeta_n \in K$ such that

(7)
$$|a_n\zeta_n f'(a_n\zeta_n)/f(a_n\zeta_n)| > n,$$

while

(8)
$$|a_n f'(a_n e i \theta_n)/f(a_n e i \theta_n)| < A.$$

By going over to a subsequence, if necessary, we may suppose that $\zeta_n \to \zeta_0$ $(n \to \infty)$. And by applying Lemma 2 with $D = S_{\delta/2,R}$ and $\mathcal{G} = \{f(a\zeta) \mid a > 1\}$ we may also suppose that $either\ h_n(\zeta) = a_n f'(a_n \zeta)/f(a_n \zeta)$ tends uniformly to a holomorphic limit theorem $h(\zeta)$ for $\zeta \in K$ or that $h_n(\zeta)$ tends uniformly to ∞ in K. The second possibility is excluded by (8). But then it follows from the uniform convergence of the $h_n(\zeta)$ that

$$h_n(\zeta_n) \to h(\zeta_0) \quad (n \to \infty),$$

contradicting (7).

Lemma 4. If the asymptotic path L of Lemma 1 lies in $S_{\delta/2,K}$ for some $\delta \in (0,\pi)$, then the conclusion of the Theorem holds.

<u>Proof</u>: Since $F(z) = z - \frac{f(z)}{f'(z)} = \alpha + o(1)$ as $z \to \infty$ on L, $z \frac{f'(z)}{f(z)} = \frac{z}{z - F(z)} = 1 + 0(1/|z|)$ on L. Therefore the hypothesis of Lemma 3 is satisfied for all r > 2R and it follows from Lemma 3 that, in $S_{\delta,R}$,

$$(9) |zf'(z)/f(z)| < C.$$

By (3), (5) and (9)

$$|\varphi(z)| = |f'(z)/f(z)\psi(z)| < C \quad (z \in S_{\delta,R}).$$

Since φ is real entire (10) remains true, if z is replaced by \overline{z} . In particular (10) holds for $z = rei\beta$ ($\beta = e \pm i\frac{\pi}{4}, e \pm i\frac{3\pi}{4}$).

Therefore, by (4), (10) and a well-known Phragmén-Lindelöf Theorem

$$|\varphi(z)| < C$$
.

And so, by Liouville's Theorem,

$$\varphi(z) = \text{constant}.$$

But this contradicts the fact that f'(z) has a non-real zero.

Lemma 5. [Special case of **T**, Theorem III.68] Let Γ_1 and Γ_2 be two, non-intersecting Jordan curves tending to ∞ . Let $E \subset \mathbb{C}$ be a domain such that for sufficiently large R

$$\partial E \cap \{z \mid |z| \ge R\} = (\Gamma_1 \cap \Gamma_2) \cap \{z \mid |z| \ge R\}.$$

Let $t\Theta(t)$ be the linear measure of the intersection of E with |z| = t. Then, if h(z) is holomorphic in \overline{E} , and A > e,

$$|h(z)| < A \quad (z \in \partial E)$$

implies that either

$$|h(z)| < A \quad (z \in E)$$

or

$$Q(r, h, E) = \pi \int_{R} r/2 \frac{dt}{t\Theta(t)} - \log \log M(r, h, E)$$

satisfies

$$\limsup_{r \to \infty} Q(r, h, E) < \infty.$$

Lemma 6. [T, Theorem VIII.14] Let Γ_1 , Γ_2 and E have the same meaning as in Lemma 5.

Let g(z) be holomorphic in E and continuous and bounded in $\overline{E} \setminus \{\infty\}$. If $g(z) \to c_j$ (j = 1, 2) as $z \to \infty$ along Γ_j , then $c_1 = c_2$.

3. Completion of the Proof of the Theorem.

The rays

$$\Lambda_1 = \left\{ z \mid \arg z = \frac{\pi}{5}, \ |z| \ge R \right\}, \ \Lambda_2 = \left\{ z \mid \arg z = \frac{4\pi}{5}, \ |z| = R \right\}$$

divide

$$H_R = \{ z \in H \mid |z| \ge R \}$$

into three parts $S = S_{\frac{\pi}{5},R}$ and Δ_1 , Δ_2 , sectors adjacent to the positive and negative real axis, respectively.

We still need to prove the Theorem in the case that there are arbitrarily large r such that there exists $z \in L$ with |z| = r and $z \in \Delta_1$ or $z \in \Delta_2$ [Lemma 4].

Let A > e be an upper bound for |zf'(z)/f(z)| on L.

Our first step is the construction of a path $L' \subset H$ on which

$$|zf'(z)/f(z)| < CA = C$$

and which divides H_R into two domains A_1 and A_2 in one of which, at least, (11) does not hold when h = zf'(z)/f(z), $E = A_1$ or A_2 . We shall prove that (12) holds in A_1 or in A_2 .

We then show that the same is true of one of the domains into which L and \overline{L} divide H_R . The Theorem follows by an application of Lemma 6 $[L = \Gamma_1, \overline{L} = \Gamma_2, c_1 = \alpha, c_2 = \overline{\alpha} \neq c_1.]$

Construction of L'. The rays Λ_1 and Λ_2 divide L into 3 parts:

$$L_0 = \{ z \in L \cap S \}, \quad L_1 = \{ z \in L \cap \Delta_1 \}, \quad L_2 = \{ z \in L \cap \Delta_2 \}.$$

If L_0 is bounded, we choose L' = L.

If L_0 is unbounded, let

$$\widetilde{L} = \Big\{ z \in \Lambda_1 \mid \exists \ z' \in L_0, \ \frac{1}{2}|z| < |z'| < 2|z| \Big\}.$$

By Lemma 3, (9) holds on \widetilde{L} and for all z in S with $|z|e\pi i/5 \in \widetilde{L}$.

If the complement of \widetilde{L} on Λ_1 is bounded, choose $L' = \widetilde{L}$.

If the complement of \widetilde{L} is unbounded, \widetilde{L} is the union of components each one of which is a straight line segment on Λ_1 of length $\geq R$. If $ri\pi/5 \notin \widetilde{L}$, then all points $z \in L$ with |z| = r must lie on "intervals" of L belonging to $L_1 \cup L_2$. Choose one of these intervals, I, with endpoints $z_1, z_2, |z_1| < |z_2|$. Discard all the others. Both endpoints of I are either on Λ_1 or on Λ_2 .

If they are on Λ_1 , they both belong to \widetilde{L} , by the definition of \widetilde{L} . If they are both on Λ_2 , we join the segments $|z|=|z_1|, z\in S$, and $|z|=|z_2|, z\in S$, to I, forming I'. The curve I' joins two components of \widetilde{L} . We can now describe L': Choose an I or I' with an endpoint as close to the origin as possible. Move along this I (or I') to its endpoint (on Λ_1) in \widetilde{L} . Move along \widetilde{L} in the direction of increasing |z| to the first endpoint of an I or I'. Then move along this I (I') to another component of \widetilde{L} and so on . . . On L' arg z lies either in $(0, \frac{\pi}{5}]$ or in $[\frac{4\pi}{5}, \pi)$, except for a denumerable set of arcs |z| = constant belonging to the I' which occur in the construction.

Let A_1 be that domain in $\{z \mid |z| \geq R\}$ bounded by L' and its conjugate complex curve $\overline{L'}$ which contains $[R, \infty)$, A_2 the domain bounded by L' and $\overline{L'}$ which contains $[-R, -\infty)$. Let $t\Theta_j(t)$ be the linear measure of the intersection of |z| = t with A_j (j = 1, 2). By construction $\min(\Theta_1(t), \Theta_2(t)) \leq \frac{2\pi}{5}$ and so

(13)
$$\pi \int r/2_{R_1} \frac{dt}{t\Theta_1(t)} + \pi \int r/2_{R_1} \frac{dt}{t\Theta_2(t)} \ge \frac{5}{2} \int r/2_{R_1} > \frac{5}{2} \log r - C.$$

We apply Lemma 5 to

$$h(z) = z \frac{f'(z)}{f(z)}, \qquad E = A_j.$$

By (3), (4) and (6),

(14)
$$\log |h(z)| \le Cr \log r \qquad (r > R).$$

On $L' \cup \overline{L'}$ (12) holds.

By (13) [notation of Lemma 5] and (14)

$$Q(r,h,A_1) + Q(r,h,A_2) \ge \left(\frac{1}{2} - \varepsilon\right) \log r \qquad (r > R),$$

so that (11) is false for at least one A_j . By Lemma 5, (12) holds in one A_j . Let B be the domain bounded by $L \cup \overline{L}$ which contains such an A_j . In addition to A_j , B contains all or part of sectors

$$\widetilde{S} = \left\{z \in S \cap \left\{r_1 \leq |z| \leq r_2\right\}\right\}$$

where the segment of Λ_1 with endpoints $r_j ei\pi/5$ belongs to \widetilde{L} . As remarked above, (12) holds in \widetilde{S} , so that (12) holds in B.

On L,

$$F(z) = \alpha + o(1)$$

as $z \to \alpha$ on L. Therefore

$$g(z) = z2\frac{f'(z)}{f(z)} - z = \frac{zF(z)}{z - F(z)} = \alpha + o(1)$$

as $z \to \infty$ on L. Since g is an even holomorphic function in A,

$$g(z) \to \overline{\alpha} + o(1)$$

as $z \to \infty$ on \overline{L} .

In B we apply Lemma 5 to

$$h(z) = g(z); \quad E = B.$$

Using $\Theta(t) \leq 2\pi$ and (12),

$$Q(r, g, A) > \frac{1}{2} \log r - 0(\log \log r),$$

so that, by Lemma 5,

$$|g(z)| < C$$
 $(z \in A)$.

Now Lemma 6 leads to the contradiction $\alpha = \overline{\alpha}$.

This completes the proof.

REFERENCES

- [HW] S. Hellerstein and J. Williamson, Derivatives of entire functions and a question of Pólya II, TAMS **234** (1977), 497–503.
- [LO]B. Ya. Levin and I. V. Ostrovski, On the dependence of the growth of entire functions on the location of the zeros of its derivative (On a problem of Pólya and Wiman), (In Russian), Sibir. M. J. 1 (1960), 427-455.
- [S]W. Schwick, Normality criteria for families of meromorphic functions, J. Analyse Math. **52** (1989), 241–289.
- [SS]T. Sheil-Small, On the zeros of the derivatives of real entire functoins and Wiman's Conjecture, Ann. of Math. 129 (1989), 179–193.
- $[\mathbf{T}]$ M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co. Ltd., Tokyo, 1959.