ON THE ZEROS OF THE SECOND
DERIVATIVE OF REAL ENTIRE FUNCTIONS

W. BERGWEILER AND W. H. J. FUCHS*

1. Introduction and Preliminaries.

An entire (or meromorphic) function $f(z)$ is called real, if for all $z \in \mathbb{C}$, $f(\mathbb{C}) = \overline{f(z)}$.

The study of real entire functions all of whose zeros are real has a long history. [See [SS] for a brief account.] In particular A. Wiman raised the question whether for such functions of order > 2, $f''(z)$ always has non-real zeros. He formulated a precise conjecture about the number $c(\rho)$ of non-real zeros for an $f(z)$ of finite order ρ, giving an explicit formula for $c(\rho)$ which showed that $c(\rho) \to \infty$ as $\rho \to \infty$.

Wiman’s conjecture was made in 1914, it remained open until the work of Sheil–Small in 1989 [SS].

For the case of infinite order Sheil–Small made the

Conjecture. Let $f(z)$ be a real entire function of infinite order all of whose zeros are real. Then $f''(z)$ has infinitely many non-real zeros.

The conjecture is known to be true, if one of the following conditions holds:

1. All zeros of $f'(z)$ are real. [HW]
2. $\limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log r} = \infty$. [LO]

In this paper we shall add to these results the

Theorem. The conjecture is true, if $f(z)$ has only a finite number of zeros.

This was already proved by Sheil–Small for functions of the form $Q(z) \exp(\varepsilon z + P(z))$, [SS], where P and Q are polynomials [SS].

We write C for a positive number which depends only on the choice of the function $f(z)$. The value of C can vary from one occurrence to the next.

From now on $f(z)$ denotes a real entire function of finite order all of whose zeros are real, which has only a finite number of zeros and whose second derivative has only a finite number of non-real zeros. Also $f'(z)$ has a non-real zero.

We shall show that such an $f(z)$ can not exist. We shall need the ‘Levin–Ostrovskii representation’ [LO]

$$\frac{f''(z)}{f(z)} = \psi(z)\varphi(z),$$

*The authors gratefully acknowledge support by the Alexander von Humboldt Foundation and the National Science Foundation.
where $\psi(z)$ is a real meromorphic function with poles at the zeros of $f(z)$ which satisfies

$$\Im \psi(z) > 0$$

in the half–plane

$$H = \{ z = x + iy \mid y > 0 \}.$$

The function $\varphi(z)$ is a real entire function. By (2) we may assume that

$$\limsup_{r \to \infty} \frac{\log \log M(r, f)}{\log r} < \infty.$$

It is known that under this condition

$$(4) \quad \log M(r, \varphi) = 0(r \log r) \quad (r \to \infty)$$

and that there are positive constants c_1, c_2 such that

$$(5) \quad c_1 \frac{|\sin \theta|}{r} < |\psi(re^{i\theta})| < c_2 \frac{r}{|\sin \theta|} \quad (r > 0, -\pi < \theta < \pi).$$

[For details see [HW; p. 499].]

Also, since $f(z)$ has only a finite number of zeros,

$$(6) \quad \psi(z) = 0(|z|) \quad (|z| > R).$$

[See HW; (1.17); p. 500]

2. **Lemmas.**

Notation. For $0 < \delta < \pi/2$ we put

$$S_{\delta,R} = \{ z \mid \delta \leq \arg z \leq \pi - \delta, \ |z| \geq R \}.$$

For a function $g(z)$ defined in a domain D

$$M(r, g, D) = \sup_{z \in D, |z|=r} |g(z)|.$$

We define

$$F(z) = z - \frac{f(z)}{f'(z)} = U(z) + iV(z).$$

Then

$$F'(z) = f(z)f''(z)/f'2(z),$$

so that, for suitably large R,

$$F'(z) \neq 0 \quad (|z| \geq R).$$
Lemma 1. [Slight extension of SS, Theorem 4, with the same proof.] $F(z)$ has an asymptotic path L in the upper half plane

$$H = \{z = x + iy \mid y > 0\}$$

on which $F(z)$ tends to $\alpha \in H$.

Lemma 2. [S, Theorem 5.1] Let $D \subset \mathbb{C}$ be a domain. Let \mathcal{G} be the family of functions $g(z)$ meromorphic in D and satisfying $gg'' \neq 0$ in D.

Then

$$\mathcal{H} = \{g'(z)/g(z) \mid g \in \mathcal{G}\}$$

is a normal family in D.

Lemma 3. If

$$|\text{re}i\theta f'(\text{re}i\theta)/f(\text{re}i\theta)| < A \quad (>1)$$

for a θ satisfying $\delta \leq \theta \leq \pi - \delta$ and an $r > 2R$, then for ζ in

$$K = \{\zeta \mid \frac{1}{2} \leq |\zeta| \leq 2, \; \delta \leq \text{arg} \zeta \leq \pi - \delta\}$$

$$|r\zeta f'(\zeta)/f(r\zeta)| < C_1 A,$$

where C_1 is a constant depending only on the choice of f and of δ.

Proof: Suppose the lemma were false. Then we can find an increasing sequence of positive numbers a_n and a sequence of complex numbers $\zeta_n \in K$ such that

(7) $$|a_n\zeta_n f'(a_n\zeta_n)/f(a_n\zeta_n)| > n,$$

while

(8) $$|a_n f'(a_n e^{i\theta_n})/f(a_n e^{i\theta_n})| < A.$$

By going over to a subsequence, if necessary, we may suppose that $\zeta_n \to \zeta_0$ ($n \to \infty$). And by applying Lemma 2 with $D = S_{\delta/2,R}$ and $\mathcal{G} = \{f(a\zeta) \mid a > 1\}$ we may also suppose that either $h_n(\zeta) = a_n f'(a_n\zeta)/f(a_n\zeta)$ tends uniformly to a holomorphic limit theorem $h(\zeta)$ for $\zeta \in K$ or that $h_n(\zeta)$ tends uniformly to ∞ in K. The second possibility is excluded by (8). But then it follows from the uniform convergence of the $h_n(\zeta)$ that

$$h_n(\zeta_n) \to h(\zeta_0) \quad (n \to \infty),$$

contradicting (7). \qed
Lemma 4. If the asymptotic path L of Lemma 1 lies in $S_{\delta/2,K}$ for some $\delta \in (0, \pi)$, then the conclusion of the Theorem holds.

Proof: Since $F(z) = z - f(z) = \alpha + o(1)$ as $z \to \infty$ on L, $z f'(z) / f(z) = 1 + o(1)$ on L. Therefore the hypothesis of Lemma 3 is satisfied for all $r > 2R$ and it follows from Lemma 3 that, in $S_{\delta,R}$,

$$|zf'(z)/f(z)| < C.$$

By (3), (5) and (9)

$$|\varphi(z)| = |f'(z)/f(z)\psi(z)| < C \quad (z \in S_{\delta,R}).$$

Since φ is real entire (10) remains true, if z is replaced by \overline{z}. In particular (10) holds for $z = re^{i\beta}$ ($\beta = e^i \frac{\pi}{4}, e^{3i} \frac{\pi}{4}$).

Therefore, by (4), (10) and a well–known Phragmén–Lindelöf Theorem

$$|\varphi(z)| < C.$$

And so, by Liouville’s Theorem,

$$\varphi(z) = \text{constant}.$$

But this contradicts the fact that $f'(z)$ has a non–real zero.

Lemma 5. [Special case of T, Theorem III.68] Let Γ_1 and Γ_2 be two, non–intersecting Jordan curves tending to ∞. Let $E \subset \mathbb{C}$ be a domain such that for sufficiently large R

$$\partial E \cap \{z \mid |z| \geq R\} = (\Gamma_1 \cap \Gamma_2) \cap \{z \mid |z| \geq R\}.$$

Let $t\Theta(t)$ be the linear measure of the intersection of E with $|z| = t$.

Then, if $h(z)$ is holomorphic in \overline{E}, and $A > e$,

$$|h(z)| < A \quad (z \in \partial E)$$

implies that either

$$|h(z)| < A \quad (z \in E)$$

or

$$Q(r, h, E) = \pi \int_0^r \frac{dt}{t\Theta(t)} = \log \log M(r, h, E)$$

satisfies

$$\limsup_{r \to \infty} Q(r, h, E) < \infty.$$

Lemma 6. [T, Theorem VIII.14] Let Γ_1, Γ_2 and E have the same meaning as in Lemma 5.

Let $g(z)$ be holomorphic in E and continuous and bounded in $\overline{E} \setminus \{\infty\}$.

If $g(z) \to c_j$ ($j = 1, 2$) as $z \to \infty$ along Γ_j, then $c_1 = c_2$.
3. Completion of the Proof of the Theorem.

The rays

\[\Lambda_1 = \left\{ z \mid \arg z = \frac{\pi}{3}, \ |z| \geq R \right\}, \ \Lambda_2 = \left\{ z \mid \arg z = \frac{4\pi}{3}, \ |z| = R \right\} \]

divide

\[H_R = \{ z \in H \mid |z| \geq R \} \]

into three parts \(S = S_{\frac{2}{3}R} \) and \(\Delta_1, \Delta_2 \), sectors adjacent to the positive and negative real axis, respectively.

We still need to prove the Theorem in the case that there are arbitrarily large \(r \) such that there exists \(z \in L \) with \(|z| = r \) and \(z \in \Delta_1 \) or \(z \in \Delta_2 \) [Lemma 4].

Let \(A > e \) be an upper bound for \(|zf'(z)/f(z)| \) on \(L \).

Our first step is the construction of a path \(L' \subset H \) on which

\[(12) \quad \left| \frac{zf'(z)}{f(z)} \right| < CA = C \]

and which divides \(H_R \) into two domains \(A_1 \) and \(A_2 \) in one of which, at least, (11) does not hold when \(h = zf'(z)/f(z) \), \(E = A_1 \) or \(A_2 \). We shall prove that (12) holds in \(A_1 \) or in \(A_2 \).

We then show that the same is true of one of the domains into which \(L \) and \(\bar{L} \) divide \(H_R \). The Theorem follows by an application of Lemma 6 [\(L = \Gamma_1, \ \bar{L} = \Gamma_2 \), \(c_1 = \alpha, \ c_2 = \bar{\alpha} \neq c_1 \).]

Construction of \(L' \). The rays \(\Lambda_1 \) and \(\Lambda_2 \) divide \(L \) into 3 parts:

\[L_0 = \{ z \in L \cap S \}, \quad L_1 = \{ z \in L \cap \Delta_1 \}, \quad L_2 = \{ z \in L \cap \Delta_2 \}. \]

If \(L_0 \) is bounded, we choose \(L' = L \).

If \(L_0 \) is unbounded, let

\[\tilde{L} = \left\{ z \in \Lambda_1 \mid \exists z' \in L_0, \ \frac{1}{2}|z| < |z'| < 2|z| \right\}. \]

By Lemma 3, (9) holds on \(\tilde{L} \) and for all \(z \) in \(S \) with \(|z|e^{\pi i/5} \in \tilde{L} \).

If the complement of \(\tilde{L} \) on \(\Lambda_1 \) is bounded, choose \(L' = \tilde{L} \).

If the complement of \(\tilde{L} \) is unbounded, \(\tilde{L} \) is the union of components each one of which is a straight line segment on \(\Lambda_1 \) of length \(\geq R \). If \(r\pi/5 \notin \tilde{L} \), then all points \(z \in L \) with \(|z| = r \) must lie on “intervals” of \(L \) belonging to \(L_1 \cup L_2 \). Choose one of these intervals, \(I \), with endpoints \(z_1, z_2, |z_1| < |z_2| \). Discard all the others. Both endpoints of \(I \) may be on \(\Lambda_1 \) or on \(\Lambda_2 \).

If they are on \(\Lambda_1 \), they both belong to \(\tilde{L} \), by the definition of \(\tilde{L} \). If they are both on \(\Lambda_2 \), we join the segments \(|z| = |z_1|, \ z \in S \), and \(|z| = |z_2|, \ z \in S \), to \(I \), forming \(I' \). The curve \(I' \) joins two components of \(\tilde{L} \). We can now describe \(L' \): Choose an \(I \) or \(I' \) with an endpoint as close to the origin as possible. Move along this \(I \) (or \(I' \)) to its endpoint (on \(\Lambda_1 \)) in \(\tilde{L} \). Move along \(\tilde{L} \) in the direction of increasing \(|z| \) to the first endpoint of an \(I \) or \(I' \). Then move along this \(I \) (\(I' \)) to another component of \(\tilde{L} \) and so on On \(L' \) \(\arg z \) lies either in \((0, \frac{\pi}{3}) \) or in \((\frac{4\pi}{3}, \pi) \), except for a denumerable set of arcs \(|z| = \) constant belonging to the \(I' \) which occur in the construction.
Let A_1 be that domain in $\{ z \mid |z| \geq R \}$ bounded by L' and its conjugate complex curve $\overline{L'}$ which contains $|R, \infty)$, A_2 the domain bounded by L' and $\overline{L'}$ which contains $[-R, -\infty)$. Let $t\Theta_j(t)$ be the linear measure of the intersection of $|z| = t$ with A_j $(j = 1, 2)$. By construction $\min(\Theta_1(t), \Theta_2(t)) \leq \frac{2\pi}{5}$ and so

$$\pi \int \frac{dt}{t\Theta_1(t)} + \pi \int \frac{dt}{t\Theta_2(t)} \geq \frac{5}{2} \int r/2R, > \frac{5}{2} \log r - C. \tag{13}$$

We apply Lemma 5 to

$$h(z) = \frac{f'(z)}{f(z)}, \quad E = A_j.$$

By (3), (4) and (6),

$$\log |h(z)| \leq C \log r \quad (r > R). \tag{14}$$

On $L' \cup \overline{L'}$ (12) holds.

By (13) [notation of Lemma 5] and (14)

$$Q(r, h, A_1) + Q(r, h, A_2) \geq \left(\frac{1}{2} - \varepsilon \right) \log r \quad (r > R),$$

so that (11) is false for at least one A_j. By Lemma 5, (12) holds in one A_j. Let B be the domain bounded by $L \cup \overline{L}$ which contains such an A_j. In addition to A_j, B contains all or part of sectors

$$\tilde{S} = \{ z \in S \cap \{ r_1 \leq |z| \leq r_2 \} \}$$

where the segment of Λ_1 with endpoints $r_j \epsilon i \pi / 5$ belongs to \overline{L}. As remarked above, (12) holds in \tilde{S}, so that (12) holds in B.

On L,

$$F(z) = \alpha + o(1)$$

as $z \to \alpha$ on L. Therefore

$$g(z) = z^2 \frac{f'(z)}{f(z)} - z = \frac{zF(z)}{z - F(z)} = \alpha + o(1)$$

as $z \to \infty$ on L. Since g is an even holomorphic function in A,

$$g(z) \to \overline{\alpha} + o(1)$$

as $z \to \infty$ on \overline{L}.

In B we apply Lemma 5 to

$$h(z) = g(z); \quad E = B.$$

Using $\Theta(t) \leq 2\pi$ and (12),

$$Q(r, g, A) > \frac{1}{2} \log r - O(\log \log r),$$

so that, by Lemma 5,

$$|g(z)| < C \quad (z \in A).$$

Now Lemma 6 leads to the contradiction $\alpha = \overline{\alpha}$.

This completes the proof.
References

