ON THE ZEROS OF THE SECOND
DERIVATIVE OF REAL ENTIRE FUNCTIONS

W. BERGWEILER AND W. H. J. Fucus*

1. Introduction and Preliminaries.

An entire (or meromorphic) function f(z) is called real, if for all z € C, f(z) =
f(2).

The study of real entire functions all of whose zeros are real has a long history.
[See [SS] for a brief account.] In particular A. Wiman raised the question whether
for such functions of order > 2, f”(z) always has non-real zeros. He formulated
a precise conjecture about the number c¢(p) of non-real zeros for an f(z) of finite
order p, giving an explicit formula for ¢(p) which showed that ¢(p) — 0o as p — oc.

Wiman’s conjecture was made in 1914, it remained open until the work of Sheil-
Small in 1989 [SS].

For the case of infinite order Sheil-Small made the

Conjecture. Let f(z) be a real entire function of infinite order all of whose zeros
are real. Then f"(z) has infinitely many non-real zeros.

The conjecture is known to be true, if one of the following conditions holds:

(1) All zeros of f'(z) are real. [HW]

(2) limsup,_, % = 0. [LO]

In this paper we shall add to these results the
Theorem. The conjecture is true, if f(z) has only a finite number of zeros.

This was already proved by Sheil-Small for functions of the form Q(z) exp(ez +
P(z)), [SS], where P and @ are polynomials [SS].

We write C' for a positive number which depends only on the choice of the
function f(z). The value of C can vary from one occurrence to the next.

From now on f(z) denotes a real entire function of finite order all of whose zeros
are real, which has only a finite number of zeros and whose second derivative has
only a finite number of non—real zeros. Also f'(z) has a non—real zero.

We shall show that such an f(z) can not exist. We shall need the ‘Levin—
Ostrovski representation’ [LO]

(3)
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where 1(z) is a real meromorphic function with poles at the zeros of f(z) which
satisfies

S (z) >0

in the half-plane
H={z=z+1iy|y>0}.

The function ¢(z) is a real entire function. By (2) we may assume that

log log M
lim sup —2—8 (r, /) < o0.
T—00 10g7“

It is known that under this condition
(4) log M (r, ) = 0(r logr) (r = o)
and that there are positive constants cq, co such that

| sin 6|

< |Y(reif)| < ch (r>0,—m<6<m).

(5) “ | sin 6|

[For details see [HW; p. 499].]
Also, since f(z) has only a finite number of zeros,

(6) ¥(z) = 0(lz]) (2] > R).
[See HW; (1.17); p. 500]

2. Lemmas.

Notation. For 0 < § < m/2 we put
Son=1{z|5<argz<m—35 |z > R).
For a function g(z) defined in a domain D

M(r,g,D)= sup |[g(2)|

z€D,|z|=r
We define i)
z .
F(z)=z— ) =U(z) +1iV(2).
Then

F'(z) = f(2)f"(2)/ f'2(2),
so that, for suitably large R,

F'(z) #0 (|z[ = R).
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Lemma 1. [Slight extension of SS, Theorem 4, with the same proof.] F(z) has
an asymptotic path L in the upper half plane

H={z=z+1iy|y >0}
on which F(z) tends to o € H.

Lemma 2. [S, Theorem 5.1] Let D C C be a domain. Let G be the family of
functions g(z) meromorphic in D and satisfying gg” # 0 in D.
Then

H=A{9'(2)/9(z) | g €G}

18 a normal family in D.

Lemma 3. If
lreiff' (reif)/ f(reid)| < A (> 1)

for a 0 satisfying d <0 < mw— 06 and an r > 2R, then for ( in

1
K={c|;<l¢/<2 s<ag¢<m -0}

rCf'(Q)/ f(rd)l < Cr4,
where C1 is a constant depending only on the choice of f and of §.

Proof: Suppose the lemma were false. Then we can find an increasing sequence
of positive numbers a,, and a sequence of complex numbers (,, € K such that

(7) |anCnf,(an<n)/f(anCn)| > n,
while
(8) lan f/ (aneify,)/ f(aneify,)| < A.

By going over to a subsequence, if necessary, we may suppose that {,, — (o
(n — o0). And by applying Lemma 2 with D = S5/, g and G = {f(aC) | a > 1}
we may also suppose that either hy,(¢) = anf'(an()/f(ar() tends uniformly to a
holomorphic limit theorem h(¢) for ¢ € K or that h,({) tends uniformly to oo in
K. The second possibility is excluded by (8). But then it follows from the uniform
convergence of the h,({) that

hn(Cn) = B(Co)  (n — 00),

contradicting (7). O
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Lemma 4. If the asymptotic path L of Lemma 1 lies in S5/9 i for some 6 € (0,7),
then the conclusion of the Theorem holds.

Proof: Since F(z) = z — J{,((zz)) =a+o(l)asz —>ocoon L, zj;:((zz)) = re =
1+ 0(1/|z|) on L. Therefore the hypothesis of Lemma 3 is satisfied for all » > 2R
and it follows from Lemma 3 that, in Ss g,

(9) 2f'(2)/f(2)| < C.
By (3), (5) and (9)
(10) o) = [F'(2)/f(2)h(2)| < C (2 € Ss,R)-

Since ¢ is real entire (10) remains true, if z is replaced by Zz. In particular (10)
holds for z = reif (8 = eti 7, eii‘%’).
Therefore, by (4), (10) and a well-known Phragmén—Lindel6f Theorem

p(2)| < C.
And so, by Liouville’s Theorem,
¢(z) = constant.

But this contradicts the fact that f’(z) has a non-real zero.

Lemma 5. [Special case of T, Theorem I11.68] Let I'y and T’y be two, non—intersectingll
Jordan curves tending to oo. Let E C C be a domain such that for sufficiently large
R

OEN{z||z| > R} = (1 NT2) N{z | |2| > R}.

Let tO(t) be the linear measure of the intersection of E with |z| = t.
Then, if h(z) is holomorphic in E, and A > e,

|h(z)| < A (2 € 0F)

implies that either
|h(z)|] <A (z€E)

or

dt
Q(r,h, E) = 7r/R7"/2m —loglog M (r, h, E)
satisfies
(11) limsup Q(r, h, E) < oo.

T—00

Lemma 6. [T, Theorem VIIL.14] Let I'y, T'y and E have the same meaning as in
Lemma 5.

Let g(z) be holomorphic in E and continuous and bounded in E \ {co}.

If g(z) = ¢; (1 =1,2) as z — oo along T';j, then ci = ca.
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3. Completion of the Proof of the Theorem.
The rays

4
M= s lomgz =, 2 R) Mo {o s = 2, 14— )
divide
HR:{Z€H| |2:|2R}

into three parts S = S z g and A1, As, sectors adjacent to the positive and negative
real axis, respectively.

We still need to prove the Theorem in the case that there are arbitrarily large r
such that there exists z € L with |z| =7 and z € A; or z € Ay [Lemma 4].

Let A > e be an upper bound for |zf'(z)/f(2)| on L.

Our first step is the construction of a path L' C H on which

(12) 2f'(2)/f(2)| <CA=C

and which divides Hp into two domains A; and Aj in one of which, at least, (11)
does not hold when h = zf'(2)/f(z), E = A; or A;. We shall prove that (12) holds
in A1 or in As.

We then show that the same is true of one of the domains into which L and L
divide Hr. The Theorem follows by an application of Lemma 6 [L =Ty, L = Ty,
cL=aq,cp=0# 1.

Construction of L'. The rays A, and A, divide L into 3 parts:
L():{ZELHS}, L1:{Z€LHA1}, LQZ{ZELﬂAz}.

If Ly is bounded, we choose L' = L.
If Ly is unbounded, let

~ 1
L= {z €A |32 € Ly, 5|z\ <] < 2|z|}.

By Lemma 3, (9) holds on L and for all z in S with |z|emi/5 € L.

If the complement of L on A1 is bounded, choose L' = L.

If the complement of Lis unbounded, L is the union of components each one of
which is a straight line segment on A; of length > R. If rir/5 ¢ L, then all points
z € L with |z| = r must lie on “intervals” of L belonging to L; U Ly. Choose one
of these intervals, I, with endpoints z1, 23, |21| < |22|. Discard all the others. Both
endpoints of I are either on A; or on As.

If they are on Ay, they both belong to Z, by the definition of L.If they are both
on Ao, we join the segments |z| = |z1|, z € S, and |z| = |22/, z € S, to I, forming I'.
The curve I’ joins two components of L. We can now describe L': Choose an I or
I’ with an endpoint as close to the origin as possible. Move along this I (or I’) to
its endpoint (on A;) in L. Move along L in the direction of increasing |z| to the first
endpoint of an I or I’. Then move along this I (I') to another component of L and

soon ... . On L' arg z lies either in (0, Z] or in 4?”, ), except for a denumerable

' B
set of arcs |z| = constant belonging to the I’ which occur in the construction.
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Let A be that domain in {z| |2| > R} bounded by L’ and its conjugate complex
curve L’ which contains [R, 00), As the domain bounded by L’ and L’ which contains
[—R, —00). Let t©;(t) be the linear measure of the intersection of |z| = ¢ with A;
(j =1,2). By construction min(01(t), ©2(¢)) < 2* and so

dt dt 5 5
13 2, ——— 2 > — 2 —1 —C.
(13) 71'/7‘/ thgl(t)-l—ﬂ'/r/ R1t®2(t)_2/r/ R1>20gr C

We apply Lemma 5 to

By (3), (4) and (6),
(14) log|h(z)| < Crlogr (r > R).

On L' UL’ (12) holds.
By (13) [notation of Lemma 5] and (14)

QUr.h A1) +QUry by A) > (5 —¢)logr (> R)

so that (11) is false for at least one A;. By Lemma 5, (12) holds in one A;. Let B
be the domain bounded by L U L which contains such an A4;. In addition to A;, B
contains all or part of sectors

S={zeSn{r <l|z| <r}}

where the segment of A; with endpoints r;ein/5 belongs to L. As remarked above,
(12) holds in S, so that (12) holds in B.
On L,
F(z) =a+o(1)
as z = a on L. Therefore

P& e
o) T i—rn oW

as z — oo on L. Since g is an even holomorphic function in A,

9(2) = 22

g(z) = a+o(1)

as z — oo on L.
In B we apply Lemma 5 to

Using ©(t) < 27 and (12),

1
Q(r,g,A) > 3 logr — 0(loglogr),

so that, by Lemma 5,
9(z)| <C (2 € A).

Now Lemma 6 leads to the contradiction o = @.
This completes the proof.
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