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Abstract. Devaney and Krych showed that for 0 < λ < 1/e the Julia set of
λez consists of pairwise disjoint curves, called hairs, which connect finite points,
called the endpoints of the hairs, with ∞. McMullen showed that the Julia set
has Hausdorff dimension 2 and Karpińska showed that the set of hairs without
endpoints has Hausdorff dimension 1. We study for which gauge functions the
Hausdorff measure of the set of hairs without endpoints is finite.

1. Introduction and main results

The Fatou set F(f) of a transcendental entire function f is defined as the set
of all z ∈ C where the iterates fn of f form a normal family. Its complement
J (f) = C\F(f) is called the Julia set. These sets are the main objects studied in
complex dynamics; see [1] and [16] for an introduction to transcendental dynamics.

In some sense, the exponential functions Eλ(z) = λez, with λ ∈ C\{0}, are
the “simplest” transcendental entire functions, and thus the dynamics of these
functions have been thoroughly studied; see [3] for a survey, as well as, e.g., [13, 15].

We mention some of the results that have been obtained. Here we restrict to the
case that 0 < λ < 1/e, even though some of the results discussed below hold more
generally. In the following we suppress the index λ and write E instead of Eλ. For
λ satisfying the above condition the function E has two real fixed points α and β
satisfying α < 1 < β, with α attracting and β repelling.

Devaney and Krych [5, p. 50] proved F(E) is equal to the attracting basin of α
and that J (E) consists of uncountably many pairwise disjoint curves connecting
a point in C, called the endpoint of the curve, with ∞. These curves are called
hairs (or dynamic rays). McMullen [10, Theorem 1.2] proved that J (E) has Haus-
dorff dimension 2. Let C be the set of endpoints of the hairs that form J (E).
Karpińska [8, Theorem 1.1] proved the surprising result that J (E)\C has Haus-
dorff dimension 1. Of course, together with McMullen’s result this implies that C
has Hausdorff dimension 2, a result she had proved already earlier [7, Theorem 1].

McMullen remarked that J (E) not only has Hausdorff dimension 2, but that in
fact the Hausdorff measure Hh(J (E)) of J (E) with respect to the gauge function
h(t) = t2/ logm(1/t) is infinite, for any iterate logm of the logarithm; see section 2
below for the definition of Hausdorff measure and Hausdorff dimension. A very
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precise description of the gauge functions h for which Hh(J (E)) = ∞ was given
by Peter [11].

The purpose of this paper is to study for which gauge functions the Hausdorff
measure of J (E)\C is finite or infinite. Our first result is the following.

Theorem 1.1. Let s > 1. Then Hh(J (E)\C) = 0 for h(t) = t/(log(1/t))s.

Our estimates in the opposite direction – as well as the description of J (E)\C in
Theorems 1.4 and 1.5 below that is used in the proofs – involve fractional iterates.

In order to state these results, note that E ′(β) = E(β) = β so that the multiplier
of the fixed point β is also β. It is a standard result in complex dynamics that
Schröder’s functional equation

(1.1) S(βz) = E(S(z))

has a solution S which is holomorphic in a neighborhood U of 0 and satisfies
S(0) = β and S ′(0) = 1. Since β > 1, the equation (1.1) allows to extend S to an
entire function by putting

(1.2) S(z) = Ek(S(z/βk)),

with k so large that z/βk ∈ U .
It is easy to see that S is real on the real axis. Since S ′(0) = 1 we have S ′(x) > 0

for all x in U ∩R, if U is sufficiently small. As S ′(x) = (Ek)′(S(x/βk))S ′(x/βk)/βk

we see that in fact S ′(x) > 0 for all x ∈ R. Thus S is increasing on R. It follows
easily from (1.2) that S(x) → α as x → −∞ while S(x) → ∞ as x → ∞. Thus
S : R→ (α,∞) is bijective.

By S−1 we denote the inverse of the restriction of S to these intervals. For r ∈ R
the fractional iterates Er : [α,∞)→ [α,∞) are then defined by Er(α) = α and

(1.3) Er(x) = S(βrS−1(x)).

It follows easily from (1.1) that this coincides with the usual definition of the
iterates Er if r ∈ N. We also note that Er ◦ Es = Es ◦ Er = Er+s for r, s ∈ R.
Moreover, E−1 is the inverse function of E : [α,∞)→ [α,∞).

We put L = E−1 so that L(x) = log x − log λ. The fractional iterates of L are
given by Lr = E−r.

Theorem 1.2. Let s > 1. Then Hh(J (E)\C) =∞ for h(t) = t/Ls(1/t).

We make some remarks about the proofs. An important ingredient in Karpińska’s
proof that J (E)\C has Hausdorff dimension 1 was her result that if

Ω = {z ∈ C : Re z ≥M and | Im z| ≤ (Re z)ε} ,
with M, ε > 0, and if z ∈ J (E)\C, then Ek(z) ∈ Ω for all large k. She then proved
that, for sufficiently large M , the set of all z with Ek(z) ∈ Ω for all k ∈ N has
Hausdorff dimension at most 1 + ε.

Karpińska and Urbański [9] also considered the dimension of certain subsets of
J (E). While their result is not stated this way, it essentially says that with

Ω =

{
z ∈ C : Re z ≥M and | Im z| ≤ Re z

(log Re z)ε

}
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the set of all z with Ek(z) ∈ Ω for all k ∈ N and ReEk(z) → ∞ as k → ∞
has Hausdorff dimension (2 + ε)/(1 + ε). We mention that the above domain Ω
also appears in Stallard’s construction [18] of entire functions whose Julia set has
preassigned Hausdorff dimension in (1, 2).

We shall adapt the methods of Karpińska and Urbański to prove the following
result.

Theorem 1.3. Let x0 > β and let ψ : [x0,∞)→ (0,∞) be an increasing function.
Suppose that ψ(x)→∞, ψ(2x) = O(ψ(x)) and ψ(x) = o(x) as x→∞.

Ωψ = {z ∈ C : Re z > x0 and | Im z| < ψ(Re z)}
and

X = X (x0, ψ) =
{
z ∈ C : ReEk(z) > Ek(x0) and Ek(z) ∈ Ωψ for all k ∈ N

}
.

Let h : (0, t0) → (0,∞) be a gauge function of the form h(t) = t/p(1/t) with some
increasing function p : (1/t0,∞)→ (0,∞) such that t→ t p(1/t) is increasing and
let δ > 0. Then:

(i) If

(1.4) p

(
t(log t)1+δ

ψ(t)

)
≤ ψ(log t)

for large t, then Hh(X ) =∞.
(ii) If

(1.5) p

(
t log t

ψ(t)

)
≥ (log t)1+δ

for large t, then Hh(X ) = 0.

Theorems 1.1 and 1.2 will follow from Theorem 1.3 and the following two results.

Theorem 1.4. Let x0 > β and z ∈ J (E)\C. Then there exist ε > 0 and k ∈ N
such that Ek(z) ∈ X (x0, L

ε).

Theorem 1.5. Let x0 > β and ε > 0. Then X (x0, L
ε) ⊂ J (E)\C.

This paper is organized as follows. In section 2 we recall the definition and prop-
erties of Hausdorff measure and Hausdorff dimension and in section 3 we discuss
fractional iterates of E and L in more detail than in this introduction. In section 4
we first recall some results about hairs and their endpoints and then prove Theo-
rems 1.4 and 1.5. Section 5 consists of the proof of Theorem 1.3 while Theorems 1.1
and 1.2 are proved in section 6.

2. Hausdorff measure and Hausdorff dimension

We recall the definition of Hausdorff measure and Hausdorff dimension; see Fal-
coner’s book [6] for more details. For A ⊂ Rm we denote by diamA the (Euclidean)
diameter of A. We denote the open ball of radius r around a point z ∈ Rm by
D(z, r). (We will only be concerned with the case m = 2 so that D(z, r) is a disk.)
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Let t0 > 0. An increasing, continuous function h : (0, t0)→ (0,∞) which satisfies
limt→0 h(t) = 0 is called a gauge function (or dimension function). For a subset
A of Rm and δ > 0 a sequence (Ak) of subsets of Rm is called a δ-cover of A if
diamAk < δ for all k ∈ N and

A ⊂
∞⋃
k=1

Ak.

For a gauge function h we put

Hδ
h(A) = inf

{
∞∑
k=1

h(diamAk) : (Ak) is δ-cover of A

}
.

Note that Hδ
h(A) is a non-increasing function of δ. Thus the limit

Hh(A) = lim
δ→0

Hδ
h(A)

exists. It is called the Hausdorff measure of A with respect to the gauge function h.
It may happen that

∑∞
k=1 h(diamAk) diverges for all δ-covers (Ak), in which

case we have Hδ
h(A) =∞ and thus Hh(A) =∞.

In the special case that h has the form h(t) = ts for some s > 0, we call Hh(A)
the s-dimensional Hausdorff measure. There exists d ≥ 0 such that Hts(A) = ∞
for 0 < s < d and Hts(A) = 0 for s > d. This value d is called the Hausdorff
dimension of A.

An important tool to estimate the Hausdorff measure and Hausdorff dimension
from below is the following result [12, Theorem 7.6.1], which is a part of Frostman’s
lemma and also known as the mass distribution principle.

Lemma 2.1. Let h be a gauge function and A ⊂ Rm. If there exists a Borel
probability measure µ supported on A such that

lim
r→0

µ(D(z, r))

h(r)
= 0 for all z ∈ A,

then Hh(A) =∞.

In order to estimate the Hausdorff measure from above, we will use the following
result.

Lemma 2.2. Let A ⊂ Rm and let h be a gauge function. Suppose that for all
x ∈ A and δ, ε > 0, there exists ρ(x) ∈ (0, 1), d(x) ∈ (0, δ) and N(x) ∈ N satisfying
N(x)h(d(x)) ≤ ε · ρ(x)m such that D(x, ρ(x)) ∩ A can be covered by N(x) sets of
diameter at most d(x). Then Hh(A) = 0.

A very similar result for Hausdorff dimension can be found in [2, Lemma 5.2].
Lemma 2.2 can be proved by the same argument, but for completeness we include
the proof. As in [2] we will use the following result [6, Lemma 4.8].

Lemma 2.3. Let K ⊂ Rm be bounded, R > 0 and ρ : K → (0, R]. Then there
exists an at most countable subset L of K such that

D(x, ρ(x)) ∩D(y, ρ(y)) = ∅ for x, y ∈ L, x 6= y,
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and ⋃
x∈K

D(x, ρ(x)) ⊂
⋃
x∈L

D(x, 4ρ(x)).

Proof of Lemma 2.2. Let K be a bounded subset of A and choose R > 0 such that
K ⊂ D(0, R) and let δ, ε > 0. Noting that

K ⊂
⋃
x∈K

D
(
x, 1

4
ρ(x)

)
we deduce from Lemma 2.3 that their exists an at most countable subset L of K
such that

K ⊂
⋃
x∈L

D(x, ρ(x))

while

D
(
x, 1

4
ρ(x)

)
∩D

(
y, 1

4
ρ(y)

)
= ∅ for x, y ∈ L, x 6= y.

For x ∈ L, let A1(x), A2(x), . . . , AN(x)(x) be the sets of diameter at most d(x)
which cover D(x, ρ(x)) ∩K so that N(x)h(d(x)) ≤ ε · ρ(x)m. Then

K ⊂
⋃
x∈L

N(x)⋃
j=1

Aj(x).

Now ∑
x∈L

N(x)∑
j=1

h(diamAj(x)) ≤
∑
x∈L

N(x)h(d(x)) ≤ ε
∑
x∈L

ρ(x)m.

Since ρ(x) ≤ δ we have D
(
x, 1

4
ρ(x)

)
⊂ D

(
0, R + 1

4
δ
)

for all x ∈ L. Since the balls

D
(
x, 1

4
ρ(x)

)
, x ∈ L, are pairwise disjoint, this yields∑

x∈L

(
1
4
ρ(x)

)m ≤ (R + 1
4
δ
)m

.

We obtain

Hh
δ (K) ≤

∑
x∈L

N(x)∑
j=1

h(diamAj(x)) ≤ ε · (4R + δ)m.

Since δ, ε > 0 were arbitrary, we conclude that Hh(K) = 0. As this holds for every
bounded subset K of A we deduce that Hh(A) = 0. �

3. Fractional iterates

It is classical (see, e.g. [14, p. 670]) that if an entire function f has a repelling
fixed point ξ of multiplier µ, then the normalized solution S of Schröder’s functional
equation f(S(z)) = S(µz) is given by

(3.1) S(z) = lim
n→∞

fn(ξ + z/µn).
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For completeness we include a proof how (3.1) can be deduced from the more
common formula for the conjugacies near attracting fixed points. If f has an
attracting fixed point at 0 of multiplier µ, then (see, e.g., [19, Section 3.4])

φ(z) = lim
n→∞

fn(z)

µn

exists and satisfies φ(f(z)) = µφ(z) in a neighborhood of 0. Moreover, φ(0) = 0
and φ′(0) = 1. A fixed point at ξ ∈ C is reduced to the case ξ = 0 by conjugating
with z 7→ z − ξ and the case of a repelling fixed point is reduced to this case by
considering a local inverse of f instead of f .

Hence if f has a repelling fixed point ξ of multiplier µ, then it follows with
T (z) = z+ ξ that T−1 ◦ f−1 ◦T has an attracting fixed point of multiplier 1/µ at 0
and

φ(z) = lim
n→∞

µn(T−1 ◦ f−1 ◦ T )n(z)

converges in some neighborhood of 0 and satisfies (φ ◦ T−1 ◦ f−1 ◦ T )(z) = φ(z)/µ
there. Here f−1 is a branch of the inverse fixing ξ, defined in some neighborhood
of ξ. It follows that

φ−1(z) = lim
n→∞

(T−1 ◦ f ◦ T )n(z/µn)

and (T−1◦f ◦T ◦φ−1)(z) = φ−1(µz). Let S = T ◦φ−1, defined in some neighborhood
of 0. Then f(S(z)) = S(µz) and

S(z) = lim
n→∞

(fn ◦ T )(z/µn) = lim
n→∞

fn(ξ + z/µn).

Once it is known that this holds in a neighborhood of 0, it follows that this in fact
holds for all z ∈ C.

In our case we have f = E and ξ = µ = β. Thus

(3.2) S(z) = lim
n→∞

En(β + z/βn).

It follows from this equation that the coefficients in the Taylor series expansion of
S are non-negative. (This can also be shown by comparing coefficients in (1.1).)
We deduce that if C > 1, then S(Cx)/S(x)→∞ as x→∞. Hence the fractional
iterates defined by (1.3) satisfy

lim
x→∞

Er(x)

x
= lim

x→∞

S(βrS−1(x))

S(S−1(x))
= lim

y→∞

S(βry)

S(y)
=∞ for r > 0.

In terms of Lr = E−r this takes the form

(3.3) lim
x→∞

Lr(x)

x
= 0 for r > 0.

More generally,

(3.4) lim
x→∞

Ls(x)

Lr(x)
= lim

x→∞

Ls−r(Lr(x))

Lr(x)
= lim

y→∞

Ls−r(y)

y
= 0 for s > r.
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We may replace Ls(x) by some power of Ls(x) here. In fact, if γ > 0 and s > r,
then

L(Ls(x)γ) = γ logLs(x)− log λ = γLs+1(x) + (γ − 1) log λ ≤ Lr+1(x) = L(Lr(x))

and hence Ls(x)γ ≤ Lr(x) for large x by (3.4). As this holds for all γ > 0, we
conclude that in fact

lim
x→∞

Ls(x)γ

Lr(x)
= 0 for s > r and γ > 0.

One consequence of this is that the conclusion of Theorem 1.2 also holds with
h(t) = t/Ls(1/t) replaced by h(t) = t/Ls(1/t)γ if γ > 0.

Lemma 3.1. Lr is concave for r > 0.

Proof. We show that (Lr)′ is non-increasing. Note that

(Lr)′(u) = β−rS ′(β−r(S−1)(u))(S−1)′(u) = β−r
S ′(β−rx)

S ′(x)

with u = S(x). Using (3.2) we have

S ′(β−rx)

S ′(x)
= lim

n→∞

(En)′(β + β−r−nx)

(En)′(β + β−nx)
= lim

n→∞

n∏
k=1

Fk(x),

where

Fk(x) :=
Ek(β + β−r−nx)

Ek(β + β−nx)
.

Taking the logarithmic derivative of Fk gives

(logFk)
′(x) = β−r−n

k−1∏
j=1

Ej(β + β−r−nx)− β−n
k−1∏
j=1

Ej(β + β−nx) < 0,

since each factor in the second product is larger than the corresponding factor
in the first product. This implies that Fk(x) is decreasing, so S ′(β−rx)/S ′(x) is
non-increasing. Therefore (Lr)′ is decreasing and thus Lr is concave. �

Lemma 3.2. Let c > 1 and r > 0. Then Lr(cx) < cLr(x) for all x ∈ [α,∞).

Proof. Since Lr is concave by Lemma 3.1, we have

Lr(x) ≥ x− α
cx− α

Lr(cx) +
cx− x
cx− α

Lr(α).

Since Lr(α) = α this yields

Lr(cx) ≤ cx− α
x− α

Lr(x)− cx− x
x− α

α = cLr(x) +
(c− 1)

x− α
(αLr(x)− αx) .

Since Lr(x) ≤ x, the conclusion follows. �
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4. Hairs and endpoints: proof of Theorems 1.4 and 1.5

We recall some results concerning the hairs that form the Julia set of E. We first
note that the half-plane {z ∈ C : Re z < β} is contained in the attracting basin of α.
Thus the Julia set J (E) is contained in the half-plane H = {z ∈ C : Re z ≥ β}.
For k ∈ Z let

P (k) = {z ∈ H : (2k − 1)π ≤ Im z < (2k + 1)π}.

The itinerary of a point z ∈ J (E) is defined to be the sequence s = (s0, s1, s2, · · · )
such that sj = k if Ej(z) ∈ P (k).

A sequence s is called allowable, if there exists t ∈ R such that Ej(t) ≥ (2|sj|+1)π
for all j ≥ 0. The key result proved by Devaney and Krych [5] (see also [4,
Proposition 3.2]) is that if s is an allowable sequence, then the set of all z with
itinerary s is a hair. (For non-allowable s this set is empty.)

For a more detailed description we follow the ideas of Schleicher and Zimmer [17]
who defined the hairs (which they call dynamics rays) by using the comparison
function F : [0,∞) → [0,∞), F (t) = et − 1. Schleicher and Zimmer wrote the
itineraries (which they call external addresses) in the form s = (s1, s2, s3, · · · )
instead of the notation s = (s0, s1, s2, · · · ) that was used in [4, 5] and that we will
also use. We write their result using our terminology.

First we note that is easy to see that s is allowable if and only if there exists
t > 0 such that

(4.1) lim sup
k→∞

|sk|
F k(t)

<∞.

Schleicher and Zimmer called such sequences exponentially bounded. Let ts be
the infimum of all t > 0 for which (4.1) holds. They then give a parametrization
gs : [ts,∞)→ P (s0) of the hairs which satisfies

(4.2) E(gs(t)) = gσ(s)(F (t)) for t > ts,

where σ is the shift map; that is, σ((s0, s1, s2, . . . )) = (s1, s2, s3, . . . ). Here the
function gs is obtained as a limit of the functions

gs, k(t) = (Ls0 ◦ Ls1 ◦ · · · ◦ Lsk ◦ F k+1)(t).

In [17, Proposition 3.4] the convergence of this sequence is shown for t ≥ t∗ with
some t∗ ∈ R, but for the parameter range of λ considered here it actually holds for
t > ts; see also [2, Lemma 3.1].

While the results contained in the papers mentioned above are very close to
the results we need, they are not quite stated in a way suitable for us. Thus we
now describe the construction of the hairs in more detail. First we mention that
Schleicher and Zimmer noted that the choice of the comparison function F (t) is
largely arbitrary. One advantage of the function F is that it does not depend on
the parameter λ. For us it will be more convenient to use E : [β,∞) → [β,∞)
instead of F .
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To rewrite the results of Schleicher and Zimmer with this comparison function,
we consider the itinerary s = 0 = (0, 0, 0, · · · ). By (4.2) we have

(4.3) E(g0(t)) = g0(F (t)) for t > t0 = 0.

Here g0 : (0,∞) → R is increasing, so that limt→0 g0(t) exists and is equal to the
repelling fixed point β of E. Thus g0 extends to a continuous and bijective function
g0 : [0,∞) → [β,∞), and (4.3) also holds for t = 0 by continuity. With u = g0(t)
we can write (4.3) as

(4.4) g−10 (E(u)) = F (g−10 (u)), u ≥ β.

Set us = g0(ts). It follows from (4.3) and (4.4) that

us = inf

{
u ∈ [β,∞) : lim sup

k→∞

|sk|
Ek(u)

<∞
}
.

The map hs = gs ◦ g−10 : (us,∞) → C is just a reparametrization of the hairs gs.
Furthermore, it follows from (4.2) and (4.3) that for u = g0(t) > g0(ts) = us we
have

E(hs(u)) = E(gs(t)) = gσ(s)(F (t)) = gσ(s)(F (g−10 (u))) = hσ(s)(E(u)).

The function hs is limit of the functions

hs, n(u) = (Ls0 ◦ Ls1 ◦ · · · ◦ Lsn ◦ En+1)(u),

that is, we have
lim
n→∞

hs,n(u) = hs(u) for u > us.

It is proved in the papers cited above that the function hs has a continuous exten-
sion hs : [us,∞)→ C. The point hs(us) is then the endpoint of the hair.

The functions hs, n obviously satisfy

(4.5) E(hs,n(u)) = hσ(s),n−1(E(u))

and taking the limit as n→∞ yields the equation

(4.6) E(hs(u)) = hσ(s)(E(u)) for u > us

mentioned above.

Lemma 4.1. For u ≥ β we have

u ≤ Rehs, n(u) ≤ u+ π

n∑
k=1

2|sk|+ 1

βk−1Ek(u)
.

Proof. First we note that if s ∈ Z and z ∈ H, then

(4.7) L(|z|) ≤ |Ls(z)| ≤ L(|z|) + (2|s|+ 1)π.

The left inequality of (4.7) implies that

Rehs, n(u) = L
(
|(Ls1 ◦ · · · ◦ Lsn)(En+1(u))|

)
≥ Ln+1(En+1(u)) = u.

To prove the upper bound for Rehs, n(u) we note that if x ≥ β and y > 0, then

L(x+ y) = L
(
x
(

1 +
y

x

))
= L(x) + log

(
1 +

y

x

)
≤ L(x) +

y

x
.
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We conclude that

L2(x+ y) ≤ L
(
L(x) +

y

x

)
≤ L2(x) +

y

xL(x)
≤ L2(x) +

y

βx

and induction shows that

(4.8) Lk(x+ y) ≤ Lk(x) +
y

βk−1x

for k ∈ N. We now fix n ∈ N and, for 1 ≤ k ≤ n, put

pk(u) = Lk
(
|(Lsk ◦ · · · ◦ Lsn)(En+1(u))|

)
.

Then

p1(u) = Rehs, n(u)

and for 1 ≤ k ≤ n− 1 we find, using (4.7) and (4.8), that

pk(u)

= Lk
(
|(Lsk ◦ · · · ◦ Lsn)(En+1(u))|

)
≤ Lk

(
L(|(Lsk+1

◦ · · · ◦ Lsn)(En+1(u))|) + (2|sk|+ 1)π
)

≤ Lk
(
L(|(Lsk+1

◦ · · · ◦ Lsn)(En+1(u))|)
)

+
(2|sk|+ 1)π

βk−1L(|(Lsk+1
◦ · · · ◦ Lsn)(En+1(u))|)

≤ Lk+1
(
|(Lsk+1

◦ · · · ◦ Lsn)(En+1(u))|
)

+
(2|sk|+ 1)π

βk−1|Ln−k+1(En+1(u))|

= Lk+1
(
|(Lsk+1

◦ · · · ◦ Lsn)(En+1(u))|
)

+
(2|sk|+ 1)π

βk−1Ek(u)

= pk+1(u) +
(2|sk|+ 1)π

βk−1Ek(u)
.

This also holds for k = n with pn+1(u) = Ln+1(En+1(u)) = u. We obtain

Rehs, n(u) = p1(u) = u+
n∑
k=1

(pk(u)− pk+1(u)) ≤ u+ π
n∑
k=1

2|sk|+ 1

βk−1Ek(u)

as claimed. �

Proof of Theorem 1.4. Let z ∈ J (E)\C and let s be the itinerary of z. Then
z = hs(u) for some u > us. It follows from (4.6) and Lemma 4.1 that

ReEk(z) = ReEk(hs(u)) = Rehσk(s)(E
k(u)) ≥ Ek(u)

for all k ∈ N. Let us < v < u. For large k we then have

| ImEk(z)| ≤ (2|sk|+ 1)π < Ek(v).

Since v < u we have v = Lε(u) for some ε > 0. Altogether we see that

| ImEk(z)| < Ek(Lε(u)) = Ek−ε(u) = Lε(Ek(u)) ≤ Lε(ReEk(z))

for large k. Since also ReEk(u) > x0 for large k, the conclusion follows. �
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Proof of Theorem 1.5. Since F(E) consists of the attracting basin of α we have
X (x0, L

ε) ⊂ J (E). Let z ∈ C. Then z = hs(us) for some allowable sequence s. Let
u > us. Then there exists k0 ∈ N such that Ek(u) ≥ (2|sk| + 1)π for k ≥ k0. For
u > us and n ≥ k ≥ k0 we deduce from (4.5) and Lemma 4.1 that

ReEk(hs,n(u)) = Rehσk(s),n−k(E
k(u)) ≤ Ek(u) + π

n−k∑
j=1

2|sk+j|+ 1

βj−1Ej(Ek(u))

= Ek(u) + π
n−k∑
j=1

2|sk+j|+ 1

βj−1Ej+k(u)
≤ Ek(u) +

n−k∑
j=1

1

βj−1

≤ Ek(u) +
β

β − 1
.

It follows that

(4.9) ReEk(hs(u)) ≤ Ek(u) +
β

β − 1

for u > us and k ≥ k0.
If us = β, choose γ ∈ (β, x0). Then (4.9) holds in particular for all u ∈ (us, γ)

and thus, by continuity, also for u = us. Hence

ReEk(z) = ReEk(hs(us)) ≤ Ek(γ) +
β

β − 1
≤ Ek(x0)

for large k, which implies that z /∈ X (x0, L
ε).

Suppose now that us > β. Choose u1, u2 with β < u1 < us < u2 such that
u2 < Eε(u1). We obtain

ReEk(z) ≤ Ek(u2) +
β

β − 1
≤ 2Ek(u2)

for large k, while

ImEk(z) ≥ (2|sk| − 1)|π| ≥ 2Ek(u1)

for arbitrarily large k. Using Lemma 3.2 we obtain

ψ(ReEk(z)) = Lε(ReEk(z)) ≤ Lε(2Ek(u2))

≤ 2Lε(Ek(u2)) = 2Ek(Lε(u2))

= 2Ek(u1) ≤ ImEk(z)

and hence Ek(z) /∈ Ω for arbitrarily large k. Thus z /∈ X (x0, L
ε) also in this

case. �

5. Proof of Theorem 1.3

The proof of (i) will follow the arguments of Karpińska and Urbański [9] while
the proof of (ii) will also use some ideas from [2].
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Proof of Theorem 1.3. Following [9] we consider the family B of all squares of the
form{

z ∈ C : β + (l − 1)π ≤ Re z < β + lπ and − 1
2
π + 2kπ ≤ Im z ≤ 1

2
π + 2kπ

}
with k ∈ Z and l ∈ N. Since J (E) ⊂ {z ∈ C : Re z ≥ β}, we see that for
every z ∈ J (E) and n ≥ 0 there exists a unique square Bn(z) ∈ B such that
En(z) ∈ Bn(z). We denote by Kn(z) the component of E−n(Bn(z)) that contains z.
Then En(Kn−1(z)) is a half-annulus centered at the origin. We denote its inner
and outer radius by rn(z) and Rn(z). Clearly Rn(z)/rn(z) = eπ.

For n ≥ 0 we define a collection Kn of sets Kn(z) by recursion. First we choose
z0 ∈ C with Re z0 > x0 such that the square B0(z0) is contained in Ωψ and we put
K0 = {B0(z0)}. Assuming that Kn−1 has been defined, let K = Kn−1(z) ∈ Kn−1.
Then En−1(K) ∈ B and thus En(K) is a half-annulus. The sets Kn(ζ) which are
contained in K and which have the property that

En(Kn(ζ)) ⊂
{
z ∈ C : 2rn(z) < Re z < 2

3
Rn(z) and | Im z| < ψ(rn(z))

}
are called the children of K. The set of children of K is denoted by ch(K). We
then put

Kn =
⋃

K∈Kn−1

ch(K).

Let Xn be the closure of the union of the elements in Kn. We define a sequence
(µn) of measures with suppµn = Xn by recursion. Let µ0 be the normalized
Lebesgue measure on X0; that is, µ0(A) = area(A ∩X0)/π

2 for every measurable
subset A of C. Suppose now that the measure µn on Xn has been defined. The
measure µn+1 on Xn+1 is then defined on each Kn+1 ∈ Kn+1 by

µn+1|Kn+1 =
areaKn+1∑

K∈ch(Kn)
areaK

µn|Kn ,

where Kn is the unique element of Kn containing Kn+1. Then (see [9] for more
details) there exists a unique Borel measure µ on X∞ =

⋂∞
n=0Xn which satisfies

µ(Kn) = µn(Kn) for every Kn ∈ Kn.
Karpińska and Urbański showed that there exists constants η > 0 and L,M > 1

such that if Re z is large enough, then [9, Lemma 2.3]

(5.1) rn+1(z) ≥ exp(ηrn(z))

as well as [9, equation (8)]

(5.2) M−n
n∏
j=1

rj(z) ≤ |(En)′(z)| ≤Mn

n∏
j=1

rj(z)
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and [9, equation (16)]

(5.3)

µ(Kn(z)) = c1(z)n

(
n∏
j=1

rj(z)

)−2 n∏
i=1

ri(z)2

ri(z)ψ(ri(z))

= c1(z)n
n∏
i=1

1

ri(z)ψ(ri(z))

for some c1(z) ∈ [L−1, L].
It follows easily from (5.1) that if Re z is large enough, then ReEk(z) > Ek(x0)

for all k ∈ N. Hence X∞ ⊂ X if z0 was chosen with Re z0 is sufficiently large. It
thus suffices to show that Hh(X∞) =∞.

In order to apply Lemma 2.1, we have to estimate µ(D(z, t)) for z ∈ X∞. We fix
z ∈ X∞ and write rj and Rj instead of rj(z) and Rj(z). It follows from (5.3) that

(5.4) µ(K) ≤ Ln
n∏
i=1

1

riψ(ri)
for K ∈ ch(Kn−1(z)).

It is not difficult to deduce from (5.1) that if C > 1 and δ > 0, then

(5.5) Cn

n−1∏
i=1

ri ≤ (log rn)1+δ

for large n.
Since En(z) is near the “center” of the half-annulus En(Kn−1(z)) and thus

En−1(z) is near the center of the square En−1(Kn−1(z)) = Bn−1(z), the Koebe
distortion theorem yields that there exist c > 0 such that

(5.6) D(z, c/|(En−1)′(z)|) ⊂ Kn−1(z).

For small t > 0 we choose n ∈ N such that c/|(En)′(z)| < t ≤ c/|(En−1)′(z)|.
Hence D(z, t) ⊂ Kn−1(z). Denoting by N(z, t) the number of children of Kn−1(z)
which intersect D(z, t) we deduce from (5.4) that

(5.7) µ(D(z, t)) ≤ N(z, t)Ln
n∏
i=1

1

riψ(ri)
.

Using again Koebe’s theorem, we see that En(D(z, t)) is contained in disk around
En(z) of radius C|(En)′(z)|t for some constant C. This implies that N(z, r) is
bounded by the number of elements of B contained in the intersection of the disk
D(En(z), C|(En)′(z)|t+2π) with the strip Tn = {z ∈ C : | Im z| ≤ ψ(rn)}. We may
assume that C ≥ 2π/c. Noting that |(En)′(z)|t ≥ c by the choice of n we see that
C|(En)′(z)|t+ 2π ≤ 2C|(En)′(z)|t. Thus

(5.8) N(z, r) ≤ area(D(En(z), 2C|(En)′(z)|t) ∩ Tn) .

We distinguish two cases:
Case 1: 2C|(En)′(z)|t ≤ ψ(rn). Then we may simplify (5.8) to

N(z, t) ≤ areaD(En(z), 2C|(En)′(z)|t) = 4πC2|(En)′(z)|2t2
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and thus (5.2) and (5.7) yield

(5.9) µ(D(z, t)) ≤ 4πC2(M2L)nt2
n∏
i=1

ri
ψ(ri)

.

Since t 7→ t p(1/t) is increasing and

t ≤ ψ(rn)

2C|(En)′(z)|
≤ Mn

2C

ψ(rn)∏n
j=1 rj

by (5.2) and the choice of n, we deduce from (5.9) and (5.5) that

µ(D(z, t))

h(t)
=
µ(D(z, t))

t
p

(
1

t

)
≤ 4πC2(M2L)n t p

(
1

t

) n∏
i=1

ri
ψ(ri)

≤ 4πC2(M2L)n
Mn

2C

ψ(rn)∏n
j=1 rj

p

(
2C

Mn

∏n
j=1 rj

ψ(rn)

)
n∏
i=1

ri
ψ(ri)

= 2πC(M3L)n p

(
2C

Mn

∏n
j=1 rj

ψ(rn)

)
n−1∏
i=1

1

ψ(ri)

≤ p

(
rn(log rn)1+δ

ψ(rn)

)
1

ψ(rn−2)ψ(rn−1)

for large n. Since rn ≤ E(Rn−1) ≤ exp(Rn−1) we have log rn ≤ Rn−1 ≤ eπrn−1
and thus ψ(log rn) ≤ ψ(eπrn−1) = O(ψ(rn−1)). It now follows from (1.4) that
µ(D(z, t))/h(t) = O(1/ψ(rn−2)). We conclude that µ(D(z, t))/h(t) → 0 in this
case.

Case 2: 2C|(En)′(z)|t > ψ(rn). Then

N(z, t) ≤ area {ζ ∈ C : |Re(ζ − En(z)| ≤ 2C|(En)′(z)|t and | Im z| ≤ ψ(rn)}
= 8C|(En)′(z)|ψ(rn)t

which together with (5.2) and (5.7) yields

(5.10) µ(D(z, t)) ≤ 8C(ML)n t
n−1∏
i=1

1

ψ(ri)
.

Now

t ≥ ψ(rn)

2C|(En)′(z)|
≥ 1

2CMn

ψ(rn)∏n
j=1 rj

and hence (5.10) yields

µ(D(z, t))

h(t)
=
µ(D(z, t))

t
p

(
1

t

)
≤ 8C(ML)n p

(
2CMn

∏n
j=1 rj

ψ(rn)

)
n−1∏
i=1

1

ψ(ri)

≤ p

(
rn(log rn)1+δ

ψ(rn)

)
1

ψ(rn−2)ψ(rn−1)
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from which we obtain µ(D(z, t))/h(t)→ 0 as in Case 1.
Thus we have µ(D(z, t))/h(t) → 0 as t → 0 in both cases and (i) follows from

Lemma 2.1.
In order to prove (ii), we denote for z ∈ X by B∗n(z) the square of sidelength

π with center z, with sides parallel to the coordinate axes. We denote by K∗n(z)
the component of E−n(B∗n(z)) that contains z. Then En(K∗n−1(z)) is again a half-
annulus centered at the origin. We denote its inner and outer radius by r∗n(z)
and R∗n(z). As before we have R∗n(z)/r∗n(z) = eπ. With the quantities rn(z) and
Rn(z) defined in the first part of the proof we have e−π ≤ r∗n(z)/rn(z) ≤ eπ and
e−π ≤ R∗n(z)/Rn(z) ≤ eπ. In particular, (5.2) holds for some M > 1 and (5.5) holds
for any given C > 1 with rn(z) and Rn(z) replaced by r∗n(z) and R∗n(z), provided
n is sufficiently large.

We now fix z ∈ X and, as before, drop z from the notation and write r∗n and R∗n
instead of r∗n(z) and R∗n(z).

We can cover En(K∗n−1(z)) ∩ Ωψ by squares of sidelength 2ψ(R∗n) whose centers
are on the real axis. The number Nn(z) of squares required is less than R∗n/ψ(R∗n).
Koebe’s theorem yields that the diameters of the preimages of these squares that
are contained in K∗n−1(z) have diameter less than Cψ(R∗n)/|(En)′(z)|, for some
constant C > 1. Moreover, (5.6) holds for some c > 0 with Kn−1(z) replaced by
K∗n−1(z). With ρn(z) = c/|(En−1)′(z)| and dn(z) = Cψ(R∗n)/|(En)′(z)| we thus see
that D(z, ρn(z)) ∩ X can be covered by Nn(z) sets of diameter dn(z). Moreover,
dn(z)→ 0 and ρn(z)→ 0 as n→∞.

Hence (ii) follows from Lemma 2.2 if we show that for given ε > 0 we have
Nn(z)h(dn(z)) ≤ ε · ρn(z)2 for large n. Noting that

ρn(z) ≥ cM−n
n−1∏
j=1

1

r∗j
≥ 1

(logR∗n)1+δ/3

by (5.5), with δ replaced by δ/3, and

dn(z) ≤ CMnψ(R∗n)
n∏
j=1

1

r∗j
≤ ψ(R∗n)

R∗n logR∗n

by (5.2) it thus suffices to show that

R∗n
ψ(R∗n)

h

(
ψ(R∗n)

R∗n logR∗n

)
=

1

p

(
R∗n logR∗n
ψ(R∗n)

)
logR∗n

≤ ε
1

(logR∗n)2+2δ/3
,

which is equivalent to

p

(
R∗n logR∗n
ψ(R∗n)

)
≥ 1

ε
(logR∗n)1+2δ/3.

But the last inequality is satisfied by the hypothesis (1.5) for large n. �
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6. Proof of Theorems 1.1 and 1.2

Proof of Theorem 1.1. Let p(t) = (log t)s so that h(t) = t/p(1/t). Let x0 > β,
ε > 0, 0 < δ < s− 1 and ψ = Lε. For large t we then have, using (3.4),

p

(
t log t

ψ(t)

)
= (log t+ log log t− logLε(t))s

=
(
L(t) + log log t− L1+ε(t)

)s ≥ (1
2

log t
)s ≥ (log t)1+δ

so that (1.5) holds. Thus Theorem 1.3, part (ii), implies that Hh(X (x0, L
ε)) = 0.

As ε > 0 was arbitrary, we see that for

Y =
⋃
ε>0

X (x0, L
ε) =

∞⋃
n=1

X (x0, L
1/n)

we also have Hh(Y ) = 0. Since E is locally bi-Lipschitz and h(2t) = O(h(t)) as
t→ 0 we see that Hh(E−1(Y )) = 0 and in fact that Hh(E−k(Y )) = 0 for all k ∈ N.
Since

J \C ⊂
∞⋃
k=1

E−k(Y )

by Theorem 1.4, the conclusion follows. �

Proof of Theorem 1.2. Let 0 < ε < s − 1. In view of Theorems 1.3 and 1.5 it
suffices to show that ψ = Lε and p = Ls satify the hypotheses of Theorem 1.3.

Clearly, ψ and p are increasing and (3.3) says that ψ(x) = o(x) while Lemma 3.2
yields that ψ(2x) = O(ψ(x)) as x→∞. In order to check the conditions on p we
put q : (0, t0) → (0,∞), q(t) = t p(1/t). Then q′′(t) = p′′(1/t)/t3. Since p = Lr is
concave by Lemma 3.1, we see that q is concave. Since also q(t) → 0 as t → 0
by (3.3) this implies that q is increasing on a suitable interval (0, t0).

It remains to verify condition (1.4). Recalling that L(x) = log x − log λ and
hence p(x) = Ls−1(log x− log λ) we deduce from Lemma 3.2 that

p

(
t(log t)1+δ

ψ(t)

)
= Ls−1(log t+ (1 + δ) log log t− logψ(t)− log λ)

≤ Ls−1(2t) ≤ 2Ls−1(t)

for large t. Since ε < s− 1 we have Ls−1(t) = o(Lε(t)) as t → ∞ by (3.4). Hence
2Ls−1(t) ≤ Lε(t) = ψ(t) for large t so that (1.4) holds. �

Remark. Let ψ(t) = t/(log t)ε. For p(t) = t1/(1+2δ+ε) we have

p

(
t(log t)1+δ

ψ(t)

)
= p((log t)1+δ+ε) = (log t)(1+δ+ε)/(1+2δ+ε) ≤ log t

(log log t)ε
= ψ(log t)

for large t so that (1.4) is satisfied. The other hypotheses of Theorem 1.3 are
also easily checked. Hence part (i) of Theorem 1.3 implies that Hh(X ) = ∞ for
h(t) = t/p(1/t) = t1+1/(1+2δ+ε). With δ → 0 we see that the Hausdorff dimension
of X is at least 1 + 1/(1 + ε) = (2 + ε)/(1 + ε).
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Similarly, with p(t) = t(1+δ)/(1+ε) we have

p

(
t log t

ψ(t)

)
= p((log t)1+ε) = (log t)1+δ

for large t so that (1.5) is satisfied. Now part (ii) of Theorem 1.3, together with the
limit as δ → 0, implies that the Hausdorff dimension of X is at most (2+ε)/(1+ε).

Altogether we see that X has Hausdorff dimension (2+ε)/(1+ε), thus recovering
the result of [9] mentioned in the introduction.
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