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Introduction

De�nition (Wandering domain)

Let f be a rational or entire function. A Fatou componentU is called
wandering domainif f n(U) \ f m(U) = ; for all m < n.
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Introduction History

Introduction

De�nition (Wandering domain)

Let f be a rational or entire function. A Fatou componentU is called
wandering domainif f n(U) \ f m(U) = ; for all m < n.

Theorem (Sullivan 1982)

There are no wandering domains for rational functions.
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First example of a wandering domain
The �rst example of a wandering domain is due to Baker. The function
considered was

f (z) = C � z2
1Y
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In 1963 Baker showed thatf has multiply connected Fatou componentsUn

with f (Un) � Un+ 1, but the question whether theUn are all di�erent
remained open. Those were the �rst known multiply connectedFatou
components.
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positive real numbers that satis�es the recurrence relation

rn+ 1 = C � r2
n

nY
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1 +

rn
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�
:

In 1963 Baker showed thatf has multiply connected Fatou componentsUn

with f (Un) � Un+ 1, but the question whether theUn are all di�erent
remained open. Those were the �rst known multiply connectedFatou
components.
In 1976 Baker was able to show that theUn are all di�erent and therefore
wandering domains.
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Introduction History

Bn� 1 Bn Bn+ 1 Bn+ 2An An+ 1 An+ 2

Un� 1 Un Un+ 1 Un+ 2

f (Bn) � Bn+ 1 (and thereforeAn+ 1 � f (An))
This implies thatBn belongs to a multiply connected Fatou
componentUn.
Assume thatUn = Um for n 6= m, then this implies thatUn = Um for
all n; m.
Baker showed that there are no unbounded multiply connectedFatou
components.
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Introduction Motivation

Theorem (Baker and Dominguez 2000)

Let f be an entire function. IfJ (f ) is not connected, then it is not locally
connected at any point ofJ (f ).
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Introduction Motivation

Theorem (Baker and Dominguez 2000)

Let f be an entire function. IfJ (f ) is not connected, then it is not locally
connected at any point ofJ (f ).

This implies thatJ (f ) can not be locally connected at any point for an
entire functionf that has a multiply connected wandering domain.

Question
Are at least the di�erent components ofJ (f ) locally connected?

We want to show that under suitable conditions every boundary component
of a multiply connected wandering domain is a curve or even a Jordan
curve and therefore locally connected.
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Results Preparations for the results

Results

De�nition (Inner and outer boundary)

Let U � C be a domain and leta 2 C n U. We denote byC(a; U) the
component ofC n U that containsa.

U

0

a
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Results Preparations for the results

De�nition (Connectivity)

Let U � C be a domain. Byc(U) we denote theconnectivityof U, that is
the number of connected components ofC n U.
For a sequence of domainsUn we callc the eventual connectivityof Un if
c(Un) = c for all largen.

U

c(U) = 6

Kisaka and Shishikura showed that the eventual connectivity of a multiply
connected wandering domain is either 2 or1 .
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Results Preparations for the results

Theorem (Bergweiler, Rippon, Stallard 2013)

Let f be an entire function with a multiply connected wandering domain
U = U0. Denote Un = f n(U).
Then every Un contains an annulus Bn such that every compact subset
C � Un is mapped inside Bn+ m for all large m2 N.

Un Un+ m

Bn Bn+ m

C
f m(C)

De�nition (Inner connectivity)

We callc(Un \ C(0; Bn)) the inner connectivityof Un and de�ne the
eventual inner connectivityrespectively.
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Then all big boundary components are Jordan curves and@1 Un� 1 = @0Un.
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Results Main results
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eventual inner connectivity ofUn is 2.
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Results Main results

Theorem 2
Suppose we have additionally to the conditions of theorem 1 that the
eventual inner connectivity ofUn is 2.
Then all wandering domains, which belong to the orbit ofUn, are bounded
by a countable number of closed curves.

With the conditions of theorem 2 we can obtain the following corollary:

Corollary
If Z is a boundary component of a wandering domain, which belongs to the
orbit of Un, such that fj (Z) does not contain any critical points for all
j 2 N0, then Z is a Jordan curve.

Both theorems work for Baker's �rst example of a wandering domain.
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Cn Cn+ 1 Cn+ 2

rn � rn� rn

Un� 1 Un

Un+ 1
f

Cn := f z 2 C : � rn � j zj � � rng
@0Cn � Un� 1, @1 Cn � Un

Cn+ 1 � f (Cn)
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We want to show that@1 Un� 1 and @0Un are both curves that coincide.
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We want to show that@1 Un� 1 and @0Un are both curves that coincide.
De�ne for all k 2 N

� k := f z 2 Cn : f j (z) 2 Cn+ j for all j=1,. . . ,kg:

� 1

� 3

� 2
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f
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f 3
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�
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� � m implies that there are no critical points inside

the � k . So all � k are topological annuli by the Riemann-Hurwitz-formula
that are bounded by Jordan curves.
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� � m implies that there are no critical points inside

the � k . So all � k are topological annuli by the Riemann-Hurwitz-formula
that are bounded by Jordan curves.
The inequality also implies the following lemma:

Lemma
There exists% >1 such that for all k2 N and z2 � k

j(f k )0(z)j � %k �
rn+ k

rn

Thereforef k is expanding inside� k and this implies thatf � k : Cn+ k ! � k

is contracting.
We parametrise now@0� k and @1 � k as curves by
 0

k and 
 1
k respectively.

Thereby one has to check that the parametrisations are compatible with
each other. Here Re

�
z�f 0(z)

f (z)

�
> 0 is used. It ensures that the curves are not

distorted too much under iteration.
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Then we use thatf � k is contracting to show that the curves
 0
k and 
 1

k
converge uniformly to the same curve
 with

trace(
 ) =
\

k2 N

� k :
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By positioning ofCn to Un� 1 and Un we have

@1 Un� 1 = trace(
 ) = @0Un:

Now we have that all big boundary components are curves, so itremains to
show that they are Jordan curves.
Since@1 Un� 1 and @0Un are curves and therefore locally connected every
point on trace(
 ) is accessible inUn� 1 and inUn.
Thus a theorem of Schön�ies yields that
 is in fact a Jordan curve.

We have proven theorem 1, so it remains to prove theorem 2.
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certain 'levels' indicated by the iterations they need to bemapped onto a
big boundary component.
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By the maximum modulus principle it is clear that only outer boundary
components are mapped onto outer boundary components.
SupposeZ is a boundary component ofU and Z 6= @1 U.
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This implies that every boundary component ofU will be eventually
mapped onto a big boundary component.
Under the conditions of theorem 1 those big boundary components are
Jordan curves, so every boundary component ofU is either a curve or even
a Jordan curve if there are no critical points in its forward orbit.
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Examples

In the following we are looking at three di�erent examples ofentire
functions with multiply connected wandering domains to which we can
apply the theorems.
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z
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�
;

whereC > 0, k 2 N and (aj ) j 2 N is a complex sequence withjaj j = rj and
(rj ) j 2 N is a fast growing sequence of positive real numbers.

M. Baumgartner (University of Kiel) Boundaries of wandering domains Barcelona, 11 June 2013 19 / 22



Examples Bergweiler's and Zheng's example

Examples

In the following we are looking at three di�erent examples ofentire
functions with multiply connected wandering domains to which we can
apply the theorems.

Bergweiler's and Zheng's example

f (z) = C � zk
1Y

j = 1

�
1 �

z
aj

�
;

whereC > 0, k 2 N and (aj ) j 2 N is a complex sequence withjaj j = rj and
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Baker's in�nite connectivity example

f (z) = C �
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j = 1
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;

whereC > 0, k 2 N and (rj ) j 2 N is a fast growing sequence of positive real
numbers.

This example includes the �rst example of Baker (1984) with awandering
domain with in�nite connectivity.
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Examples Baker's in�nite connectivity example

Baker's in�nite connectivity example

f (z) = C �
1Y

j = 1

�
1 �

z
rj

� k

;

whereC > 0, k 2 N and (rj ) j 2 N is a fast growing sequence of positive real
numbers.

This example includes the �rst example of Baker (1984) with awandering
domain with in�nite connectivity.
Bergweiler and Zheng showed that Baker's �rst example of a wandering
domain has also in�nite connectivity.
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wherep(z) is a certain polynomial and(rj ) j 2 N and (kj ) j 2 N are fast growing
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sequences of positive real numbers.

Bishop showed that the Julia set of this function has Hausdor� dimension 1
and that the Fatou set consists of multiply connected wandering domains
which are bounded byC1 � curves.
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for my work.

Bishop's example

f (z) = p(z) �
1Y

j = 1

 

1 �
1
2

�
z
rj

� kj
!

;

wherep(z) is a certain polynomial and(rj ) j 2 N and (kj ) j 2 N are fast growing
sequences of positive real numbers.

Bishop showed that the Julia set of this function has Hausdor� dimension 1
and that the Fatou set consists of multiply connected wandering domains
which are bounded byC1 � curves.
Our proofs use some of Bishop's ideas. But the arguments to show that the
boundaries areC1 � curvesdo not work for the other examples.
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The End

Thank you for your attention.
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