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Introduction

Let f be a rational or entire function. A Fatou componeltis called
wandering domairif f"(U)\ f™(U) = ; forallm< n.

There are no wandering domains for rational functions.
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First example of a wandering domain

The rst example of a wandering domain is due to Baker. Thedtion
considered was "
z
f(z)= C z? 1+ =
i=1 L
whereC > 0 is a small constant; is large andr,)n2n iS @ sequence of
positive real numbers that satis es the recurrence relatio

r
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=1 )

In 1963 Baker showed thdt has multiply connected Fatou componernttig
with f (U,)  Un+ 1, but the question whether thé&J,, are all di erent
remained open. Those were the rst known multiply conneckadou
components.
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The rst example of a wandering domain is due to Baker. Thedtion
considered was "
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In 1963 Baker showed thdt has multiply connected Fatou componernttig
with f (U,)  Un+ 1, but the question whether thé&J,, are all di erent
remained open. Those were the rst known multiply conneckadou
components.

In 1976 Baker was able to show that thé, are all di erent and therefore
wandering domains.
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Uner Unez

o f(Bn) Bp+1 (and thereforeAn+1  f(An))
o This implies thatB,, belongs to a multiply connected Fatou
componentU,.
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Uner Unez
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o This implies thatB,, belongs to a multiply connected Fatou
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o Assume thatU, = Uy for n 6 m, then this implies thatU, = U, for
all n;m.
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L )

o f(Bn) Bp+1 (and thereforeAn+1  f(An))

o This implies thatB,, belongs to a multiply connected Fatou
componentU,.

o Assume thatU, = Uy for n 6 m, then this implies thatU, = U, for
all n;m.

o Baker showed that there are no unbounded multiply conneétatbu
components.
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Let f be an entire function. 19 (f) is not connected, then it is not locall
connected at any point of (f).
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Let f be an entire function. 18 (f) is not connected, then it is not locall
connected at any point of (f).

This implies thatJ (f) can not be locally connected at any point for an
entire functionf that has a multiply connected wandering domain.

Are at least the di erent components af (f) locally connected? I

We want to show that under suitable conditions every bougdaymponent
of a multiply connected wandering domain is a curve or eveordah
curve and therefore locally connected.
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Preparations for the results

LetU C be a domain. Byc(U) we denote theconnectivityof U, that is
the number of connected components @i U.

For a sequence of domait, we callc the eventual connectivityof Uy, if
c(Up) = c for all largen.

Kisaka and Shishikura showed that the eventual connegtiofta multiply
connected wandering domain is either 2lor.
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Preparations for the results

Let f be an entire function with a multiply connected wanaeridomain
U = Ug. Denote U, = f"(U).

Then every | contains an annulus Bsuch that every compact subset
C Uy is mapped inside B, for all large m2 N.

Un Un+m
fm(C)
C .....
= | 4
Bn Bn+m

We callc(U,\ C(0;By)) the inner connectivityof U, and de ne the
eventual inner connectivityespectively.
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Main results

Letf be an entire function with a multiply connected wanderingrdon
U = Ug. DenoteU, = f"(U).

Suppose that there exists a sequence of positive real nusr{benhon as
well as; > 0 such that for a sequence of annuli

Chi=fz2C: 1, | zj g the following conditions hold:

0 @C, U, 1,@C, Uy

o Cr1 f(C)
o There existan > — such that for allz 2 f %(Ch+1)\ Cn
z 192) z 192) _
) m and Re ) > 0

Then all big boundary components are Jordan curves @), ; = @U,.
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Main results

Suppose we have additionally to the conditions of theorenhdt the
eventual inner connectivity dfl, is 2.

Then all wandering domains, which belong to the orbitlgf, are bounded
by a countable number of closed curves.

With the conditions of theorem 2 we can obtain the followingralary:

If Z is a boundary component of a wandering domain, which gdao the
orbit of Uy, such that f(Z) does not contain any critical points for all
j 2 Ng, then Z is a Jordan curve.

Both theorems work for Baker's rst example of a wanderingrdon.
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Proof

Understanding the setting of the theorem 1.:
fm Iy

T
i

0C=1z2C: 1y | zj g
°o@C, U, i, @C, Uy
o Cr1 f(G)

Cn+2




Idea of the proof

We want to show that@ U, 1 and @U, are both curves that coincide.

Barcelona, 11 June 2013 13/ 22



Idea of the proof

We want to show that@ U, 1 and @U, are both curves that coincide.
Dene forallk 2 N

k=22 Cy:fl(2) 2 Coyj for all j=1,... kg:

Barcelona, 11 June 2013 13/ 22



Proof Idea of the proof

We want to show that@ U, 1 and @U, are both curves that coincide.
Dene forallk 2 N

k=22 Cy:fl(2) 2 Coyj for all j=1,... kg:

Cn Ch+1 Ch+2 Ch+3

M. Baumgartner (University of Kiel) Boundaries of wandering domains Barcelona, 11 June 2013 13/ 22



Idea of the proof

We want to show that@ U, 1 and @U, are both curves that coincide.
Dene forallk 2 N

k=22 Cy:fl(2) 2 Coyj for all j=1,... kg:

Cn Ch+1 Ch+2 Ch+3

Barcelona, 11 June 2013 13/ 22



Idea of the proof

We want to show that@ U, 1 and @U, are both curves that coincide.
Dene forallk 2 N

k=22 Cy:fl(2) 2 Coyj for all j=1,... kg:

Cn Ch+1 Ch+2 Ch+3

Barcelona, 11 June 2013 13/ 22



Idea of the proof

We want to show that@ U, 1 and @U, are both curves that coincide.
Dene forallk 2 N

k=22 Cy:fl(2) 2 Coyj for all j=1,... kg:

Cn Ch+1 Ch+2 Ch+3

L—1
-
w
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Proof Idea of the proof

The inequality 2120 m implies that there are no critical points inside
1) P

the . So all y are topological annuli by the Riemann-Hurwitz-formula
that are bounded by Jordan curves.
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Proof Idea of the proof

The inequality 2120 m implies that there are no critical points inside
1) P

the . So all y are topological annuli by the Riemann-Hurwitz-formula
that are bounded by Jordan curves.
The inequality also implies the following lemma:

Lemma
There exist$% >1 such that for all k2 N and z2

(%) o Tk
n
Thereforef ¥ is expanding insidey and this implies thaf * : Chi !
is contracting.
We parametrise nov@ ¢ and @ ¢ as curves byE and |} respectively.
Thereby one has to check that the parametrisations are cdibfgwith

each other. Here Resz(oz()z) > 0 is used. It ensures that the curves are n

distorted too much under iteration.
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Proof Idea of the proof

@ Un 1 @Un 1
2

1
/S
\\O

O O “‘ “ O
oili O
@Cn ..... ' (II ....... @ Cn
Olo?)T o O
o/l\i o
i‘i o [0
Then we use thaf ¥ is contracting to show that the curves? and |}
converge uniformly to the same curvewith
\
tracg( ) = K-
k2N
15/ 22
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Proof Idea of the proof

By positioning ofC, to U, 1 and U, we have
@ U, 1= trace ) = @Un:

Now we have that all big boundary components are curves, seniiains to
show that they are Jordan curves.

Since@ U, 1 and @U, are curves and therefore locally connected every
point on tracg ) is accessible i), 1 and inU,.

Thus a theorem of Schon ies yields thatis in fact a Jordan curve.

We have proven theorem 1, so it remains to prove theorem 2.
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For this reason it makes sense to group the boundary comgsrian
certain 'levels' indicated by the iterations they need tolnepped onto a
big boundary component.
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Idea of the proof

By the maximum modulus principle it is clear that only outerundary
components are mapped onto outer boundary components.
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This implies that every boundary componentfwill be eventually
mapped onto a big boundary component.

Under the conditions of theorem 1 those big boundary comptmare
Jordan curves, so every boundary componentJaé either a curve or even
a Jordan curve if there are no critical points in its forwantbio
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Examples Bergweiler's and Zheng's example

In the following we are looking at three di erent exampleseottire
functions with multiply connected wandering domains to ethive can
apply the theorems.

M. Baumgartner (University of Kiel) Boundaries of wandering domains Barcelona, 11 June 2013 19/ 22



Bergweiler's and Zheng's example

Examples

In the following we are looking at three di erent exampleseottire

functions with multiply connected wandering domains to ethive can
apply the theorems.

v
fg=c ¢ 1 %
=1

whereC > 0, k 2 N and(g);2n is a complex sequence wifgj = r; and
(r))j2n is a fast growing sequence of positive real numbers.

Barcelona, 11 June 2013 19/ 22



Bergweiler's and Zheng's example

Examples

In the following we are looking at three di erent exampleseottire

functions with multiply connected wandering domains to ethive can
apply the theorems.

v
fg=c ¢ 1 %
=1

whereC > 0, k 2 N and(g);2n is a complex sequence wifgj = r; and
(r))j2n is a fast growing sequence of positive real numbers.

This example includes the rst example of Baker.

Barcelona, 11 June 2013 19/ 22



Baker's in nite connectivity example

¥ 7z K
f(z)=C 1 -
. I
j=1
whereC > 0, k 2 N and (rj)j2n is a fast growing sequence of positive ree
numbers.

Barcelona, 11 June 2013 20/ 22



Baker's in nite connectivity example

¥ 7z K
f(z)=C 1 -
. I
j=1
whereC > 0, k 2 N and (rj)j2n is a fast growing sequence of positive ree
numbers.

This example includes the rst example of Baker (1984) withvandering
domain with in nite connectivity.
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Baker's in nite connectivity example

¥ 7z K
f(z)=C 1 —
. I
j=1
whereC > 0, k 2 N and (rj)j2n is a fast growing sequence of positive ree
numbers.

v

This example includes the rst example of Baker (1984) withvandering
domain with in nite connectivity.

Bergweiler and Zheng showed that Baker's rst example of aaexing
domain has also in nite connectivity.
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for my work.
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Bishop showed that the Julia set of this function has Hausdiamension 1
and that the Fatou set consists of multiply connected wangigrdomains
which are bounded bg! curves

Barcelona, 11 June 2013 21/ 22



Examples Bishop's example

The following example is due to Bishop (2011). It was theiatiexample
for my work.

Bishop's example
|
\2 1 z ki.
f@=p@ 1 5 o
j=1

wherep(z) is a certain polynomial antj)j>n and (kj)j2n are fast growing
sequences of positive real numbers.

>

Bishop showed that the Julia set of this function has Hausdiamension 1
and that the Fatou set consists of multiply connected wangigrdomains
which are bounded bg! curves

Our proofs use some of Bishop's ideas. But the arguments tovsthat the
boundaries ar€€!  curvesdo not work for the other examples.
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Thank you for your attention.
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